
Preface

Thanks so much for Mr. Joseph Attard for writing this amazing tutorial book for the Z-turn Board.

Joseph is a Senior lecturer II working at Malta College for Arts Science and Technology on the

island of Malta. He became an electronics enthusiast since a very early stage which culminated in

a BEng Hons degree in Electronic Systems from Portsmouth University UK (2010) and a Master

degree in MicroElectronic and MicroSystems from the University of Malta (2016). He has gained

great experience from building various embedded systems using both PIC microcontrollers and

Xilinx FPGAs. He makes sure to keep up with technology and always finds time to learn new

microprocessor/FPGA systems. His passion led him to Xilinx Zynq 7 System-on-Chip (SoC), and

after an extensive research on available Computer-on-Module Boards, he settled for MYIR’s

Z-turn Board which is one of the best cost per available-peripheral Computer-on-Module boards,

available on the market. Joseph’s email address is pic18f4455@yahoo.com

In this book, Joseph shared a lot of content on how to work with the Z-turn board, starting from

simply creating a project in Vivado to flash an LED, continuing to Detecting Switch inputs, all the

way to interfacing the Zynq 7 System on Chip to multiple analogue sensors through multiple

XADC channels. All the above-mentioned interfacing is done from both the ARM Cortex A9,

commonly known as the Processing System and the Artix 7 FPGA, commonly known as

Programmable Logic, both residing within the Zynq 7 SoC.

Being a lecturer, Joseph did not simply show the steps of how to achieve the goals one is set to

achieve when using the Z-turn Board, but also pointed out hidden procedures, one has to

undergo, while implementing these steps. He makes sure to explain the reasons why, one has to

go through the required hidden procedures, and this added material, makes it really helpful for

beginners and established engineers alike, to quickly get used to the Z-turn board.

This book includes a lot of C code and VHDL code written by the author himself. This is

accompanied by lots of comments and explanations from where the C functions are derived in

SDK which for the novice engineer would be quite difficult to understand. All VHDL code is

originally written by the author and one has to have a good understanding of how VHDL works to

obtain the full benefit of this book.

The Z-turn board is one of the best off-the-shelf Computer on Module Boards available in the

market today. It has a vast array of peripherals ranging from very high-speed interface connectors,

HDMI, USB etc. It is advisable by the author to invest a little bit more in MYIR’s Z-turn Cape IO

board which could be connected directly underneath the Z-turn board. This Cape IO board offers

better IO capabilities for those users who would like to interface the Z-turn Board to external

peripherals such as LEDs, switches, motors, sensors, etc.

Given the vast amount of peripherals present on the Z-turn board and the amount of computer

http://www.myirtech.com/list.asp?id=502
http://www.myirtech.com/list.asp?id=532
http://www.myirtech.com/list.asp?id=532

power present on the Zynq 7, one cannot ignore the potential one can achieve, in areas such as

Machine Learning, Machine Vision and AI. By writing this book, Mr. Joseph Attard and MYIR are

hoping to make the Z-turn board, the preferred choice for both novice engineers and experienced

engineers alike, in their endeavor to learn how to work with Xilinx Zynq 7 SoC.

This work will not stop here and MYIR encourage more and more players to join in sharing

knowledge with the general public for a better future.

Catalogue

Chapter 1........ Creating a Project for the Z_turn ONLY for the FPGA part of the Zynq 7

Chapter 2........ Steps to create an A9 Hard Core project using both Vivado and SDK

Chapter 3........ Flashing LEDs from both Processing System and Programmable Logic

Chapter 4........ Detecting Switch Inputs from Programmable Logic

Chapter 5........ Using the DIP switches with the Processing System

Chapter 6........ Interfacing with the Button Switch on the Z-turn board

Chapter 7........ Processing System Dual AXI block control

Chapter 8........ Information on XADC

chapter 9........ Sampling External ADC from the Processing System

Chapter 10........ Multiple Analogue Sensing using XADC–Data is common to both PS and PL V2

Chapter 11........ Event driven sampling of multiple XADC channels from the Programmable Logic

Chapter 1 | Joseph Attard

Page 1 of 25

Getting Started

The first point of reference to start working with the Z-turn board is a Youtube video that shows the

link from where to download the board-support-files and how to install them correctly. This is given

below:

https://www.youtube.com/watch?v=VDYoweTZtfU

This video will introduce the Github link below, from where to download the board-support-files.

https://github.com/q3k/zturn-stuff

Then the Github site will take you to the following wiki page:

https://reference.digilentinc.com/reference/software/vivado/board-files?redirect=1

The above is the wiki page that shows how to install the board files for Vivado. The following sections

show how to install the board support files for Vivado.

Installing the Board-Support-Files

The board files are used by Vivado. These consist of XML files used by Vivado to recognize various

development boards. The board files were downloaded from Github link stated above.

The board file folder must be copied to the location shown by figure 1 below:

Figure 1: Location where to copy the Board support Files

Figure 2 below shows the copied folder in the board_files directory within the Xilinx Directory. The

folder must be copied as is! That is, do not remove or add any files to the copied folder!

Figure 2: Z-turn folder seen with the other board support files within Xilinx Directory

https://www.youtube.com/watch?v=VDYoweTZtfU
https://github.com/q3k/zturn-stuff
https://reference.digilentinc.com/reference/software/vivado/board-files?redirect=1

Chapter 1 | Joseph Attard

Page 2 of 25

Figure 3: Github folder contents

Figure 3 above shows the contents of one of the folders downloaded from Github. It is advisable to

copy both folders into the Xilinx directory as they are in the folder indicated by figure 2.

The following section shows how to create a project for the Z-turn board in Vivado. The project will

only include a simple VHDL module, therefore only the Programmable Logic part of the Zynq 7

System-on-Chip will be used. The following sections show the full procedure, right up to programming

the Zynq 7.

How to create a project in Vivado

Figure 4: Start page in Vivado

Figure 4 above is self-explanatory, all the user has to do is to left click on Create Project link.

A window pops up, click next

Figure 5: Pop Up Window 1

For the first pop-up window, click on Next.

Chapter 1 | Joseph Attard

Page 3 of 25

Figure 6: Name the Project Window

Figure 6 shows where to write the name of the new project, and what one needs to do, to store in the

desired location within the PC.

Click on NEXT again.

Figure 7: Project Type Window

Since in this project, a VHDL module is going to be created, then one should leave the window shown

in Figure 7 as is. Click on NEXT again.

Figure 8: Adding the VHDL source file

Chapter 1 | Joseph Attard

Page 4 of 25

In the next window, shown by Figure 8 in the previous page, the user will be asked whether any source

files shall be created and/or included in the project. So, one must first click on the plus (+) sign in the

left corner and then select create file from the drop-down list.

This will lead to another pop-pup window which asks for the name of the module and whether VHDL

or Verilog will be used as the preferred language for the module created. Since the author only knows

how to program in VHDL, then the file type is going to be VHDL. The file should be given a name that

is related to the function of the module. In this case, since the VHDL module is going to light an LED,

the name implies the module’s function! All this is shown in figure 9 below:

Figure 9: Give a name to the VHDL module

Figure 10 below shows the new VHDL module is part of the project. One could add as many modules

as needed. This could become handy if a top-down approach is used to build the system.

Figure 10: Add source files to the project

Chapter 1 | Joseph Attard

Page 5 of 25

Figure 11: Choosing the language used in the source file

Figure 12: Constraints File

Vivado will then ask whether a constraints file should be added. Since the board support files have

been included, one does not need to include a constraints file at this stage, so click NEXT for this

window, without doing any changes.

Figure 13: Choosing the Zynq 7 SoC according to part number

In the next pop-up window, one can either choose the Zynq 7 according to the part number resident

on the development board, or even better one can choose the board itself by first clicking on the

Chapter 1 | Joseph Attard

Page 6 of 25

boards tab and then choose the Z-turn board from the list. This is only possible if the Board Support

files of the relative board are included in the Xilinx folder as described earlier in this chapter.

Figure 14: Selecting the Z-turn Board from the list

Click on NEXT.

Figure 15: Project Summary

Figure 15 is the last window that pops up while setting up the project. It contains a summary of all

the previous settings done. All that needs to be done is to click on FINISH.

Once FINISH is pressed, a new window pops up. In the new window, one can enter the inputs and

outputs of the VHDL module that was created before.

Chapter 1 | Joseph Attard

Page 7 of 25

Figure 16: Define the inputs and outputs of the VHDL module

Now, at this point, one might not know exactly how many inputs and outputs, the module might end

up with, however if one has any idea of any common inputs and outputs that the module might

have(such as the clock and the reset inputs), one could include them immediately in the table shown

in figure 16 above. However, if currently, the user does not have any idea what the names of the

inputs/outputs are going to be, it is perfectly safe to just click on the OK button and continue with the

next pop-up window without submitting any names.

Vivado opens and one can find the source files as shown in Figure 17 below.

Figure 17: Location of the Source Files

Double clicking on the VHDL source file so that one can write the VHDL code that eventually will be

translated into hardware later by Vivado.

Chapter 1 | Joseph Attard

Page 8 of 25

Figure 18: Typical VHDL source file

Figure 18 and Figure 19 show the same VHDL file and code. In this project, an LED will be lit. It is a

simple instruction, however at this point, the objective of this chapter is to show all the steps needed

to develop a Zynq 7 project that will operate only the Programmable Logic part.

Figure 19: Simple VHDL instruction

Once the VHDL code is written, the code must be saved from the icon shown in Figure 19. By saving

the file, Vivado is also checking the syntax and if there is any syntax error, Vivado will pop up a window.

Creating a Block Design

The next step is to create a Block Design. This approach is the easiest approach one should take when

developing a project for the Zynq 7 System-on-Chip especially because the board support files of the

Z-turn board are already included in Vivado. That way, Vivado would know the features and

parameters of the Z-turn board and would give warnings or error messages if one would try to use

hardware that is outside the hardware settings of the Z-turn board. Figure 20 on the next page, shows

the steps one has to go through to create a block design. Once the block design has been created, a

new file-type will be generated by Vivado where a schematic representation of the hardware could

be drawn. This replaced the canvas in Xilinx ISE. The next step is to include the processing system as

shown in figure 21 on the next page.

Chapter 1 | Joseph Attard

Page 9 of 25

Figure 20: Creating a Block Design

Why do we have to include the Zynq Processing System in our Design?

The reason for including a Zynq Processing System in our design is because it is the only way how one

can download the VHDL code to create hardware in the Programmable Logic part! This means that

when the boot-image file is created later in SDK, this will be fetched by the Processing System of the

SoC and after reading it, the hardware part will be configured in the Programmable Logic. So even

though in this example, only the Programmable Logic part is going to be active, the Processing System

part must also be included in the hardware design! Another reason for including the Zynq Processing

System in the hardware design is because the 100 MHz clock required by the sequential circuits within

the Programmable Logic part can only be provided by the Zynq Processing Part! Figure 21 shows the

three steps needed to create a Zynq Processing System. There are two ways how to add the Zynq

Processing System both shown in Figure 21.

Figure 21: Including the Processing System

Figure 22: Zynq Processing System on Canvas

Now that the Zynq processing system is

included in the schematic, it would be a good

idea to click on Run Block Automation as

shown in Figure 22. This will enable the board

settings as provided by Github and therefore

Chapter 1 | Joseph Attard

Page 10 of 25

establish the peripherals that are already connected on the Z-turn board. Figure 23 below shows a

pop-up window that asks the user to confirm the pre-set board settings.

Figure 23: Preset Z-turn Board Settings

Just click OK on this window and leave everything as is.

Figure 24: Expanded Zynq Processing System Block Diagram

Figure 24 shows the expanded version of the Zynq Processing block after the Run Block Automation

has been enabled. Not to generate any errors, the next step is to connect the FCLK_CLK0 which is the

main 100 MHz clock output of the Zynq Processing System, to the AXI inputs at the left of the

Processing System block.

Next include the VHDL module written previously. This is done by right clicking on the canvas or Block

Design window, select Add Module from the list. A new window pops up with the suggested VHDL

Chapter 1 | Joseph Attard

Page 11 of 25

modules highlighted. Double click

on the module and it will be added

in block form in the schematic

diagram.

Figure 25: Adding a VHDL module to the schematic

Figure 26: Selecting the VHDL module

Figure 26 shows the VHDL module that can be

converted into block diagram to be added to the

schematic diagram o f the project. It must be noted

here that if more than one VHDL modules have been

written and are part of the project, all of these

modules will be listed in the lower part of this

window. One can select which one of the modules

could be included in the schematic.

Figure 27: VHDL module in schematic

Chapter 1 | Joseph Attard

Page 12 of 25

Figure 27 shows the VHDL module is part of the schematic. Since in this particular project, an LED is

only to be lit first and then code could be changed for the same LED to flash instead of just having the

LED lit steadily, there is no need for a clock input to the VHDL block - it is going to be free-running!

That is, it has nothing to do with the PS part of the SoC!

Creating a Hardware Wrapper

After deciding on which VHDL modules are going to form part of the system, the next step is to create

a hardware-wrapper. This is another technical name for the top-level module of a system where it

will include all the components of the system. Failing to do the steps in Figure 28 will result in an

incomplete system and therefore will not work in practice!

Figure 28: Creating a Hardware Wrapper

Once the hardware wrapper is created, it is time to synthesize the design. Figure 29 shows how to

synthesize the design by clicking once on run Synthesis.

Figure 29: Synthesize the code

Chapter 1 | Joseph Attard

Page 13 of 25

The window of Figure 30 pops up, Click
on OK because it is better to let the
default settings as they are.

Leave the synthesis to complete. Figure
31 show the design runs.

Figure 30: Launching Synthesis

Figure 31: Design Runs

Once Synthesis is done,

even though Vivado

suggests to Run

Implementation, it is a

good idea to Open

Synthesized Design

because at this point, it

would be a good idea to

assign the external pins to

the inputs and outputs.

Figure 32: Synthesis Ready window

Chapter 1 | Joseph Attard

Page 14 of 25

Assigning Pin numbers to the System

Figure 33: Assigning Pin numbers

Figure 33 illustrates one way to assign pin numbers to the inputs/outputs of the system. Since in this

system, there are only three LEDs used, only these LEDs must be connected. After opening the

Synthesized model, click on the I/O Ports tab and adjust the pin numbers according to the Z-turn board

circuit diagram.

Figure 34: Assiging Voltage Levels to pins

Figure 34 shows how to assign voltage levels to pins. These must be LVCMOS33 not to generate any

errors meaning that the outputs are capable of outputting 3V3. Also, the square boxes under Fixed

column must be ticked not to generate any misleading errors!

Now save the new constraints file as shown in Figure 35.

Figure 35: Saving the new constraints file

Chapter 1 | Joseph Attard

Page 15 of 25

A pop-up window just like the one shown in Figure 36 shows up. Click on OK.

Figure 36: New Constraints File Warning Window

This means that since the constraints have been

changed, a new constraints file will be generated - all

there is to do is to give it a name - Vivado will take care

of the rest.

Figure 38 shows the new constraints file name is

pinouts.XDC and it is now part of the source file list.

Figure 37: Naming the new constraints file

Figure 38: The New constraints file forming part of the source files

Chapter 1 | Joseph Attard

Page 16 of 25

Figure 39: Generated Syntax for new constraints file

Figure 39 above shows the new way how to initialize the pinouts in Vivado. This is very different from

Xilinx XISE code, so it is advisable to let Vivado do all the work!

Figure 40: Naming the pins

Note in Figure 40 above the _0 naming convention. This is due to creating a hardware wrapper which

is necessary for the bitstream to be generated correctly. So this indicates that the hardware wrapper

has been created correctly and now one can proceed to generating the bitstream file.

However, to generate the bitstream file one has to re-synthesize again. However, this time, instead of

running synthesis, one can run implementation as shown in Figure 40.

Figure 40 also shows that the old synthesis files are all out-dated and that new ones have to be re-

generated due to the changes done in the constraints file.

Figure 41: Launching synthesis again

Chapter 1 | Joseph Attard

Page 17 of 25

click on OK again.

Figure 42: re-launching synthesis again

In these snapshots one can

see Vivado going through the

synthesis stage and also

through the implementation

stage. Once these are done

without any errors, the

window of figure 43 pops up.

Figure 43: running through the synthesis and implementation stages

Chapter 1 | Joseph Attard

Page 18 of 25

Once the window of Figure 43 pops up,

choose the Generate Bitstream radio

button and then click on OK to generate

a bitstream file.

Figure 44: Implementation ready

Wait for the bitstream file to be generated and once

successful, do not open the Implemented Design but

click on OK.

Figure 45: Bitstream file ready

Export Hardware

Once the bitstream file is generated, the next step is to export the hardware. This is done by making

sure that Vivado is in the dashboard, that is, there are no files opened. Click on File, then scroll down

to Export, select Export Hardware from the list. This is shown below.

Figure 46: Export Hardware

Chapter 1 | Joseph Attard

Page 19 of 25

Figure 47: Include the Bitstream file

Make sure to include the bitstream file by ticking the square box before hitting OK below!

Launch SDK

The next step is to Launch SDK from within the project itself. This is done by once again, clicking on

File, scrolling down to Launch SDK and click on it. It must be mentioned here that if one is using a 13”

laptop or a small screen, it can happen that Launch SDK will not be immediately visible. If this

happens, all that must be done is scroll down to the last option on the File-List and then use the arrow-

down key to reveal the Launch SDK option.

Figure 48: Launching SDK

The next window pops up, click on OK. This means that the folders and files created by SDK will be

stored in the same directory as the Vivado project itself.

Chapter 1 | Joseph Attard

Page 20 of 25

Figure 49: Store the SDK project within the Vivado Project

Figure 50: SDK opens

Figure 51: An SDK project is created automatically

Chapter 1 | Joseph Attard

Page 21 of 25

Now that SDK is opened, one must create a First Stage Boot Loader File in short FSBL file. This file is a

bootloader file and once copied to the SD card, and the Zynq 7 is powered up, it will look for this

bootloader file to start operating.

Figure 52: Creating a new application

Click on File, then select New, a sub-menu appears on the right, click on Application Project.

Figure 53: Naming the FSBL project

Figure 53 shows the new window that pops up. All that must be done is just give it a name. It is

recommended to include the letters FSBL in your project name so that one can distinguish it from the

C project that could be generated later!

As Figure 53 suggests, click on NEXT.

Chapter 1 | Joseph Attard

Page 22 of 25

Figure 54: Selecting the type of the project

Figure 54 shows how the FSBL project type is selected. So, highlight Zynq FSBL first and then click on

FINISH.

Figure 55: Viewing the Console in SDK

To create the FSBL project, SDK takes a while dependent on the type of processor one has, it may

take several minutes.

Chapter 1 | Joseph Attard

Page 23 of 25

Figure 56: FSBL project created

Figure 56 shows a newly created FSBL project, that is part of the main Vivado project. The next step is

to create a boot image file. This will be copied to the SD card, then the Zynq 7 will look for it, as soon

as it is powered up. To create a boot image file, one must right-click on the newly created FSBL project

and from the list, choose create boot image file. This is shown in figure 56.

Figure 57: Create Boot Image Window

A new window pops up. In the lower part

of this window, one can find the FSBL.elf

file and the .bit file created earlier in

Vivado. So, the Zynq 7 first reads the

bootloader file and then reads the .bit file

to create the hardware in the

programmable logic part. Click on Create

Image button and SDK will generate an

image file that has to be copied to the SD card for booting the Zynq 7.

Chapter 1 | Joseph Attard

Page 24 of 25

Figure 58: Console shows the image file ready

Copying the image file to SD card

After the image file is created, the next step is to copy it on SD card. This is done just using the normal

copy/paste combination of commands in Windows. However, one has to find the right image file and

the following snap shots shows the steps.

Figure 59: The Project's location

Figure 59 shows the project location in the hard disk.

Figure 60: Location of the image file

Chapter 1 | Joseph Attard

Page 25 of 25

Figure 60 shows the location of the boot image file that must be copied to SD card using the copy/paste

commands in Windows. Figure 60 also shows that only the BOOT file has to be copied only!

Insert an SD card in an SD card to USB adapter. Insert the adapter in the USB port in the laptop or PC.

Windows should detect the SD card and opens a new window showing the contents of the SD card.

Use the copy/paste commands in Windows to copy the BOOT image file.

After copying the file, make sure to disable or disengage the SD card from Windows not to corrupt it.

Insert it in the slot of the Z-turn board, power up the board and the LEDs should light up. Please note

that as the board schematics dictate, the LEDs need a logic 0 on the pins for them to light up. Enjoy!

P a g e 1 | 20

Steps to create an A9 Soft core project using both Vivado and SDK

Introduction

In this chapter, the ARM Cortex A9 will be used to control the flashing of LEDs. This time, instead of

writing VHDL code to create hardware, C instructions will be written in a typical C project. So, in this

project, the author will show how to create a C project from SDK and which functions should be used

to light the LEDs located at MIO 0 and MIO 9. Once again, the whole process how to create a project

will be shown so that one will become more familiar with the steps needed to create a project in

Vivado.

Starting a new project in Vivado

Figure 2. 1 : Starting a Project in Vivado

Figure 2.1 speaks for itself, click on Create Project

Figure 2. 2: Name the Project

Give a name to the project and make sure that it will be stored in the desired folder. Click on NEXT

below.

P a g e 2 | 20

Figure 2. 3: Type of Project Page

Figure 2.3 shows the type of project one can use, since this project will be based on the hard core A9

processor or the Processing System part of the Zynq 7, this page will not affect the project, so it will

be left untouched. Click NEXT.

Figure 2. 4: Adding Source Files

Figure 2.4 asks to add source files. Again, since this project will focus on the Processing System part of

the Zynq 7, no source files need to be created at this point. Click on NEXT.

P a g e 3 | 20

Figure 2. 5: Adding Constraints File

The next page asks for the constraints file or how the pins will be connected. This is unnecessary

because since the Board Support Files have been included in Vivado folder as described in chapter 1.

So, click on NEXT.

Figure 2. 6: Selecting the Z-turn Board

Figure 6 shows how to select the Z-turn board from the list. This will make sure that Vivado and SDK

will configure the environments to comply with the Z-turn board peripherals and characteristics.

Just to refresh one’s memory, figure 2.7 and 2.8 below, show the XML files downloaded from Github

and where these files should be stored within Vivado directory.

Figure 2. 7: Github folder

Then after extracting the files, copy them to:

P a g e 4 | 20

Figure 2. 8: Z-turn folder within Vivado

Figure 2. 9: Project Summary Page

Figure 2.9 shows the project summary page. Click on FINISH to open the project in Vivado.

Figure 2. 10: Creating a new Block Design

Once the project environment is opened in Vivado, one can immediately create a new Block Design.

This will open a new schematic window where one can connect all the components in the design.

Follow the steps in Figure 2.10 above to create a new schematic.

P a g e 5 | 20

Figure 2. 11: Schematics Window

Figure 2.11 shows an opened schematics window. It also shows the steps to create a new A9 hardcore

processor always referred to as the Processing System.

Figure 2. 12: Block Automation

After the Processing System part is created, one must click on Run Block Automation so that all the

hardware peripherals of the A9 core will be enabled. This is shown in Figure 2.13. Make sure that

Apply Board Preset will be ticked!

Figure 2. 13: Apply Board Presets

P a g e 6 | 20

Figure 2. 14: Connecting the AXI clocks

Make sure to connect the AXI clocks as shown in Figure 2.14 to avoid errors.

Now it is time to create a Hardware Wrapper. This serves as a top-level block to the sub-systems in

the system.

Figure 2. 15: Creating a Hardware Wrapper

Figure 2. 16: Let Vivado create all the settings

P a g e 7 | 20

Referring to Figure 2.13 - after double clicking the block diagram of the A9 core, one must be aware

of how Vivado shows which peripherals can be used in software. Apart from others, there are two

UARTs. At least UART 1 must be enabled, so that one will be able to use the basic C project template

called “Hello World” within SDK. Using this C project template, one will solve all the linker problems

between the software part and the hardware part. It is recommended to use this template and not

the blank C project template! If the UART peripherals are removed from the Zynq 7 Processing

System, then this C project could not be used in SDK.

If peripherals that are not used in the processing system part are disabled, the firmware might not

work, so it is recommended that when using the Board Support Files, one will NOT disable any of the

peripherals already enabled in the preset version of the Zynq Processing System!

Since in this project, the focus is on how to enable the Processing System of the Zynq 7 and also how

to use the built-in functions in SDK to enable certain peripherals, at this point, no VHDL module will

be created, so after the HDL wrapper is created, one can generate the bit-stream file straight away!

After creating the HDL wrapper, one can generate the bit stream.

At this point, one must note that no constraints files have

been created or used. This is because this is taken care of

by Vivado. The pins of the SoC are allocated according to

the board support files. So one can do without the

constraints file when working with the IP core.

Figure 2. 17: Bitstream File generated

Figure 2.18 shows the next step after the bitstream file has been created. The hardware file must be

exported and this is done from the File menu. File → Export → Export Hardware

Figure 2. 18: Exporting the Bitstream File

P a g e 8 | 20

Figure 2. 19: Include the Bitstream File

Make sure to tick the square box as shown in Figure2.19.

Then one can open SDK from Vivado. This will create a subfolder within the hardware-project-folder

where all the SDK files will be saved.

Click on File → Launch SDK

Save the SDK project <Local to the project>

Figure 2. 20: Launching SDK fromo within Vivado

Figure 2. 21: Opening SDK

P a g e 9 | 20

Figure 2.21 shows the SDK linked to the Vivado project. The next step is to create a First Stage Boot

Loader (FSBL) project that will link all the C and VHDL project together. Figure 2.22 shows the steps

to create an FSBL project which will be used by the Zynq 7 Processing System to load both the

hardware and software of the system.

Figure 2. 22: Creating an FSBL project

Figure 2. 23: Naming the FSBL project

Figure 2.23 show what one must fill,

to create a new FSBL project.

P a g e 10 | 20

Figure 2. 24: Choosing FSBL form the List

Figure 2. 25: SDK console

Figure 2.25 show the SDK console running. This is a useful part of SDK and therefore one must make

sure to listen to it!

Now after the FSBL project has been successfully created, one must create a C project. This project

consists of many C source files and header files, together with the functions needed by the

application in quation!

P a g e 11 | 20

Figure 2. 26: FSBL project created

Figure 2. 27: Creating a C project

To create a new C application, one must file

click on FILE -> new -> new application -> the

window of Figure 2.27 pops up. Give the C

project a name and leave the rest is it is.

As already stated previously, it is advisable to

use this template as the base of the C project

because Vivado will not generate any

unnecessary errors due to incorrectly created

C project.

Figure 2. 28: Creating a C project

P a g e 12 | 20

Only the Hello World template is good to build a C application. It is advisable to make sure that one

of the UARTs is enabled as otherwise this application will not be available to the user.

The above happened to the author when he tried to open the hello world template when in Vivado

the author disabled all the peripherals and only the blank-application-project was available!!

Figure 2. 29: The C project residing on top of the other two projects

Now one must make sure that UART 1 is enabled because the USB to

UART chip is only connected to UART 1 which resides at MIO-48 and

MIO-49.

This is done by changing the settings of the board support package

of the project!!

Figure 2. 30: Modifying the Board Support Package

1) Right-click on the name of the C project.

2) Click on the Board support package of the C

project.

3) Then click on Board Support Package Settings

Figure 2. 31: Changing the Board Support Packages to change UART 1 settings

P a g e 13 | 20

Figure 2. 32: Console in SDK shows all the transformation being done

Figure 2.33 show the location of the Hello

World, C program. Now it is time to open it

and write some code to flash an LED and send

data on the serial port.

Vivado also has an extra feature that once

you save the project it will start re-building on

its own.

Figure 2. 33: Location of the C project in SDK

The Software Part in SDK

So far, the Vivado project was created and linked to the SDK from where C instruction could be written

to control in this application the two LEDs connected with pins MIO0 and MIO9 of the Processing

System part of the Zynq 7. Double-clicking on helloworld.c file will open it on SDK to be edited as

follows:

Figure 2. 34: Location of all C functions

Figure 2.34 show the folder where all the C functions available to the

user reside. Click on the arrow pointing to this folder to reveal more

folders.

P a g e 14 | 20

Figure 2. 35: C Functions Library

Figure 2.35 shows one level deeper in the folder to reveal more folders

that contain the functions of all peripherals enabled in the system.

Figure 2. 36: Folders containing functions

Figure 2.36 show various folders that contain the respective functions

already written and ready to be used by the user. In this particular

application where only two LEDs will be lit, and these LEDs are

connected to MIO0 and MIO9, the gpiops_v3_3 folder will be used

because this folder contains all the functions needed to configure the

GPIO bank located on the PS part of the Zynq 7.

Figure 2. 37: GPIO_PS functions

The adjacent files shown in Figure 2.37 contain all the functions

needed to control the GPIOs that are located on the PS part of the

Zynq 7. Remember that these GPIOs have nothing to do with the

GPIOs connected to the PL part and therefore they have different

configurations and also different names! Make sure to select the right

folder from the list!

P a g e 15 | 20

Configuring the Processing System (PS) GPIOs

The following routine should be used to configure nearly all the peripherals from the Processing

System side of the Zynq 7. One must include the following include directive for the functions to be

eligible:

#include “xgpiops.h”

First look for the lookupConfig():

XGpioPs_Config *XGpioPs_LookupConfig(u16 DeviceId)

The above function is located in xgpiops_sinit.c file.

The above function returns a pointer of type XGpioPS_Config while is passed a parameter of type

u16.

The DeviceID parameter can be replaced with XPAR_PS7_GPIO_0_DEVICE_ID. This is located in

xgpiops_g.c file

Now cut the XGpioPs_Config from the name of the function above and paste it as one of the initial

data types at the beginning of the main (). Assign a name to this pointer as shown below:

XGpioPs_Config *ConfigPtr;

Then equate the above function to the name given to the pointer. The final result is shown below:

ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

Now its time to initialize the GPIO_PS peripheral. Use the following function:

s32 XGpioPs_CfgInitialize(XGpioPs *InstancePtr, XGpioPs_Config *ConfigPtr,u32 EffectiveAddr)

which is located in xgpiops.c file. The above function returns a type of signed 32 (s32) and is passed

various parameters.

So cut the s32 and paste it as part of the data type list at the top of the main function. Assign a name

to a variable of type s32.

s32 Status;

Cut and paste as one of the data types XGpioPs and give it a name as well at the beginning of the main

().

XGpioPS Gpio;

For *ConfigPtr use ConfigPtr as before so the above function will now look like this:

Status = XGpioPs_CfgInitialize(&Gpio, ConfigPtr, ConfigPtr->BaseAddr);

The BaseAddr was taken from XGpioPs_hw.h file.

Now if one is to equate a function’s return variable to a variable just like what has been done with

XGpioPs_CfgInitialize(), it is good practice to check its validity by writing the following if-statement.

If this if-statement is not included in the code, a warning is generated in the output file.

P a g e 16 | 20

if (Status != XST_SUCCESS)
{

 return XST_FAILURE;
}

Setting the Direction of the Pin and Enabling the Output

Now for each pin in the GPIO, one has to set its direction -whether the pin is going to act as an input

or an output. Also, if the pin is going to act as an output, one has to enable that output! The following

functions are used:

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)

The above two functions are located in XGpioPs.c file. Before each function, there is a description of

what the function should do and sometimes there are also hints on the parameters. So, make sure to

read the comments before every function to have a better understanding of its effects and also what

type of parameters should be passed to it!

The first function above:

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

returns a void and therefore expect nothing from it,

the first parameter that should be passed is the name of the instance – in this case it is &Gpio

u32 Pin is the pin number the function will be affecting, since in this particular example, two LEDs

connected to MIO0 and MIO9 are going to be used, then this function should be written for two pins

– pin 0 and pin 9.

u32 Direction: for this parameter, the function accepts either 0 if the pin is going to act as an input,

or 1, if the pin is going to act as an output

now for the second function:

void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)

again, it returns a void so nothing should be expected from it

XGpioPs *InstancePtr should be replaced once again with &Gpio

u32 Pin should be replaced with the pin number – for this example Pin should be replaced with either

0 or 9, while u32 OpEnable should be replaced with 1 if the outputs are enabled and 0 if the outputs

are disabled!

P a g e 17 | 20

Writing to the individual Pin

The last function that needs explanation is the following:

void XGpioPs_WritePin(XGpioPs *InstancePtr, u32 Pin, u32 Data)

The above function writes to the individual pins.

Once again it returns a void and therefore expect nothing once the function is ready.

Replace XGpioPs *InstancePtr with &Gpio

Replace u32 Pin with the pin number - in this case it has to be 0 or 9

Replace u32 Data with either 1 for logic high or 0 for logic 0.

The LEDs connected to MIO 0 and MIO 9 on the Z-turn board are connected such that a logic 0 will
switch them on while a logic 1 will switch them off!

So the main() will look like this:

int main()
{
 int Status;
 XGpioPs_Config *ConfigPtr;
 XGpioPs Gpio; /* The driver instance for GPIO Device. */

 init_platform();

 /* * Initialize the GPIO driver. */
 ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);
 Status = XGpioPs_CfgInitialize(&Gpio, ConfigPtr,
 ConfigPtr->BaseAddr);
 if (Status != XST_SUCCESS)
 {

 return XST_FAILURE;
 }

 // LED1 gpio setting
 XGpioPs_SetDirectionPin(&Gpio, 0, 1);
 XGpioPs_SetDirectionPin(&Gpio, 9, 1);
 XGpioPs_SetOutputEnablePin(&Gpio, 0, 1);
 XGpioPs_SetOutputEnablePin(&Gpio, 9, 1);

 while (1) {
 XGpioPs_WritePin(&Gpio, 0, 0);
 XGpioPs_WritePin(&Gpio, 9, 0);
 delay();
 XGpioPs_WritePin(&Gpio, 0, 1);
 XGpioPs_WritePin(&Gpio, 9, 1);
 delay();
 }
 cleanup_platform();
 return 0;
}

P a g e 18 | 20

Now since the A9 core will execute the above code very rapidly, a delay function was introduced so

that one can see the LEDs blinking. A typical delay function can be written as shown below:

void delay()
{
 int i;
 for (i = 0; i < 10000000; i++)
 {
 //do nothing
 }

}

Another way to flash the LEDs on MIO 0 and MIO 9 simultaneously is by using the following functions

instead of the ones used in the main code previously.

void XGpioPs_Write(XGpioPs *InstancePtr, u8 Bank, u32 Data)

the only parameter that is different this time is the u8 Bank which has to be replaced with 0 as a

number, u32 Data can be replaced with either a decimal number which is not recommended for this

instance or better with a hexadecimal number. Thus, to write a logic 1 in both MIO 9 and MIO 0

simultaneously using the above function, one must convert it to:

void XGpioPs_Write(&Gpio, 0, 0x00000201);

The same procedure could be written for the direction function

void XGpioPs_SetDirection(XGpioPs *InstancePtr, u8 Bank, u32 Direction)

could be replaced with:

XGpioPs_SetDirection(Gpio, 0, 0x00000201);

And

void XGpioPs_SetOutputEnable(XGpioPs *InstancePtr, u8 Bank, u32 OpEnable)

could be replaced with:

XGpioPs_SetOutputEnable(&Gpio, 0, 0x00000201);

Again Gpio is according to how the XGpioPs *InstancePtr was equated at the beginning of the main()

XGpioPs Gpio;

P a g e 19 | 20

Creating the Boot Image File

This time to create a boot-image file, one has to right-click on the C project and not on the FSBL

project! This is shown in figure 2.38 below:

Figure 2. 38: Creating a Boot Image File

Figure 2.39 shows that this time, there are three files and

not two in the boot image file. This shows that now the

boot image file consists of the FSBL file, the bitstream file

and also the software file.

Figure 2. 39: Check files in Boot Image File

P a g e 20 | 20

Figure 2. 40: Location of the Boot Image File

After the boot image file is created, it can be located in the C project and not the in the FSBL project,

so make sure to select the right boot image file!

Copy the boot file to the SD card and insert it in the SD slot on the Z-turn board. Enjoy!

Page 1 of 19

Flashing LEDs simultaneously but independently from the Processing System and Programmable

Logic Fabric

Introduction

In this project, the versatility, flexibility and parallelism that could be achieved using the Zynq 7

System-on-Chip will be discussed. A VHDL entity that flash an LED will be created. After that, a

software program will be written in C that also flashes an LED connected to the one of the MIO pins

will be created. The VHDL entity will work independently from the program that will be flashed in the

Zynq Processing System. So, in this project, there will be two independent hardware working in

parallel!

The process how to create a project in Vivado and how to create a VHDL file have already been

explained in chapters 1 and 2 so those will not be covered anymore. This chapter will go through the

steps to achieve the goal of using both the Processing System and Programmable Logic independently

for the first time.

Defining the Port terminals of the VHDL entity

Figure 3. 1: Creating terminals for the VHDL entity

Figure 1 show the procedure to write the port terminals of the VHDL entity that has been created

while setting up the project environment. Notice how a bus could be created!

Once Vivado has opened, look in the sources tab and double click on the name of the VHDL entity to

open it up to start writing code. This is shown in Figure 2 on the next page.

Page 2 of 19

Figure 3. 2: Search for the VHDL entity

Figure 3. 3: Entity Architecture

The way of thinking when writing code in VHDL is a bit different when compared to writing code for a

microprocessor. This is because even though VHDL contains sequential statements, one has to keep

in mind that when writing code in VHDL for an FPGA, the code will be translated into hardware as

opposed to writing code that will be flashed in memory of a microcontroller and then executed one

instruction at a time. This will be explained in the following paragraphs.

First of all the primary system clock on the Z-turn board is 100 MHz. This is very convenient because

its period is 10 ns and therefore it can track even relatively high frequency signals. So, let’s say one

would like to flash an LED with 100 milli-second frequency (100 ms). Let’s also assume that the duty

cycle is 50% so that the time the LED will be switched on will be the equal to the time the LED will be

switched off. Do the following:

100 𝑚𝑠

10 𝑛𝑠
= 10,000,000

10,000,000 is the number the 100 MHz clock has to count so that 100 ms pass.

So, assuming 50% duty cycle, create a variable within an process that counts up with every rising edge

of the primary clock. From 0 up to 5,000,000, the LED will be swtiched off while from 5,000,000 up to

Page 3 of 19

10,000,000, the LED will be switched on. When 10,000,000 is reached the counter is reset to zero and

the process will start all over.

The VHDL code for the above explanation is shown in code snippet 3.1 Note that the reset switch is

acitve low, this has to be according to how the reset switch is connected in hardware, otherwise the

counter will remain reset all the time and the LED will never light up, so be careful!

Code Snippet 3. 1: Flashing LED in VHDL

Save the source code and Synthesize the code.

Figure 3. 4: Launch synthesis

Now, create a block design to include the VHDL entity together with the Zynq processing system.

Figure 3. 5: Creating a block Design

Page 4 of 19

After the block design file is created, in the empty canvas, right click on the canvas and choose Add

Module from the list. This will access the VHDL entity that has been created previously and will be

made available in block-form to be added in the schematic. Figure 3.6 show the procedure:

Figure 3. 6: Adding the VHDL entity in Block Design Schematic

Figure 3. 7: The VHDL entity is available in the list

The adjacent pop up window shows the VHDL entities that could

be added in the schematic. Double Click on it.

The entity shows up in block form in the canvas as shown in

Figure 3.8 below.

Figure 3. 8: VHDL entity in block form

Page 5 of 19

Figure 3. 9: Connecting the terminals to external pins

Figure 3.9 shows the procedure to define the pins as external pins so that later on they could be

connected to physical pins of the SoC.

Now it is time to create an A9 hard-

processor so click on the plus (+) sign

and write “Zynq” in the field provided in

the pop up window. Then click on OK.

Figure 3. 10: Including the Zynq Processing
System in the Block Design

Figure 3. 11: Processing System is part of the
schematic

Click on Run Block Automation to

include the parameters and peripherals

of the Z-turn board.

Figure 3. 12: Leave all Pre-set Settings

Click on OK for the adjacent window

so that all the Z-turn board’s

peripherals will be included in the

Vivado project.

Page 6 of 19

Figure 3. 13: Zynq Processing System co-exist with VHDL entity in Block Design

Figure 3. 14: connect the 100 MHz clock

Connect the 100 MHz clock which is denoted as FCLK_CLK0 on the Zynq Processing System diagram

to the VHDL entity’s clock input. Even though Figure 3.14 shows that the AXI_GPn inputs are

connected to FCLK_CLK1, it is advisable not to do so but to connect them also to the 100 MHz clock

FCLK_CLK0!

Figure 3. 15: Creating a Hardware
Wrapper

To create a hardware wrapper,

one needs to right-click on the

block design name and select

Create Hardware Wrapper from

the list.

Page 7 of 19

Leave Vivado to do all the work

Figure 3. 16: Leave Vivado to Update

Leave Vivado to update before continuing as otherwise Vivado will get mixed up!

Now click on Run Implementation.

Figure 3. 17: Synthesis Out-of-date

For Figure 3.17, click Yes. This is because of the new changes that have been done since the last

synthesis.

Page 8 of 19

Click Yes for this window as well.

Figure 3. 18: Implementation Complete Window

Once implementation is done, it is time to

assign the physical pins to the VHDL entity

IO pins. These must be given according to

the Z-turn board pin configuration so that

the hardware will comply with the

software.

On the other hand, the pinouts for the

Zynq Processing System are already

assigned by virtue of the Board Support

Files that has been installed as described in

chapter 1.

Now open the implemented design and click on the IO Port tab as shown in Figure 3.19.

Figure 3. 19: Vivado assigns random pin numbers to terminals

Vivado assigns random pin numbers to the terminals of the hardware. These have to be changed to

comply with the design of the Z-turn board.

Page 9 of 19

Figure 3. 20: Pins Comply with Z-turn Board

Now the pins are assigned the correct pin number so that the entity will be physically connected to

the LEDs on the Z-turn board.

Figure 3. 21: Confirming that MIO pins are correctly assigned

Figure 3.21 confirms that the Zynq Processing System pins are correctly connected to the peripherals.

This could be confirmed from the schematic diagrams provided by MYIR.

Figure 3. 22: Saving the new constraints file

Since pinouts have been changed from the

ones assigned by Vivado, a new constraints file

will be created and saved. This new

constraints-file will be part of the project and

takes precedence over the one created

automatically by Vivado.

Page 10 of 19

Figure 3. 23: Naming the new constraints file

Click on Generate BitStream. If Any windows pop up because Synthesis or implementation are out

of date, just click on OK to re-do these stages again.

Figure 3. 24: Bitstream Generated

Page 11 of 19

Figure 3. 25: Export the Hardware

After the bitstream file is generated, it is time to export hardware, so click on File → Export →

Export Hardware.

Tick the include bitstream box and then click OK

From the file menu, select Launch SDK. Now in the author’s 13-inch laptop, sometimes this option
is not seen on the screen so one might think that it is not included. Well it is at the very end of the
file menu so one needs to scroll with the arrow-down button just one place down and then hit
enter on the keyboard and the following window pops up as shown in Figure 3.26.

Figure 3. 26: Start SDK from within Vivado

Page 12 of 19

SDK will launch automatically and by default it will be pointing to the workspace where the Vivado

project is.

Figure 3. 27: SDK IDE

The hardware part of the project is

complete, and the files needed by SDK are

already loaded in SDK. At this point one

must create a new application project that

will generate the necessary files to boot

from the SD card. This application is called

the FSBL application and this is what

follows next.

Figure 3. 28: Creating a new FSBL project

Figure 3. 29: Name the FSBL project

Page 13 of 19

Figure 3. 30: Select the FSBL template

Figure 3. 31: FSBL files are being generated

Figure 3. 32: Notice the progress bar

Make sure to check the progress bar on the lower right of the screen. This is necessary to understand

when one should continue to open a new C project.

Page 14 of 19

Figure 3. 33: FSBL project is created

At this point it is very important to check whether the hardware part of the system is working
before trying the software part or the PS part. So create a boot image file from the FSBL project
and check that the programmable logic is working.

Now create a new C project where C code will control the Zynq Processing System. This is done by

clicking on File → New → Application Project then

Figure 3. 34: Naming the C project

Page 15 of 19

Figure 3. 35: Choosing the Hello World Template

Again, wait for SDK to finish compiling and building the workspace.

As stated before, at least one of the UARTs must be enabled for this C project to be available for the

user. It must be said that the UART that could be used for debugging is UART 1 and therefore one

needs to make sure that it is properly enabled from the C-project’s Board Support Package (BSP). The

following figures will illustrate the steps.

Figure 3. 36: Changing the board Support Files

When the changes are done, hit OK, then the whole project is re-built again automatically.

Page 16 of 19

Code Snippet 3. 2: Changing to UART 1

Locate the HelloWorld.c file:

Figure 3. 37: Locating Hello World File

Software for the Processing System

Now it is time to write the software to flash the LED connected to MIO 0 and MIO 9 on the Z-turn

board. The user does not have to assign any pins in the constraints file because these form part of the

Board Support Files.

The first thing is to include the xgpiops.h file

Code Snippet 3. 3: Include the xgpiops.h

Page 17 of 19

Code Snippet 3. 4: Initializing the MIO port

Code Snippet 3. 5: Setting the Port Direction and Enabling the Output Port

Code Snippet 3. 6: Switching on and off the LEDs + printing on Serial Port

All the above instructions are explained in chapter 2 and therefore it will not be repeated here.

Code Snippet 3. 7: Software Delays

The delays are used so that the LEDs could be seen blinking.

Page 18 of 19

Saving the C file will immediately start the build operation again. When this is finished one can create

the boot image file that will be saved in the SD card. This is show in figure 3.38.

Figure 3. 38: creating a boot image file

Figure 3. 39: Three files make up the boot image file

Figure 3. 40: Location of the Boot image file

Page 19 of 19

Eject the SD card from the computer and insert it in the Z turn board. The program should start, there

will be the two green LEDs on MIO 0 and MIO 9 blinking together with the LEDs that are connected to

the Programmable Logic part. On the serial monitor, the Processing System will transmit the Hello

World message.

1

Detecting the slide switches on the Z-turn Board from Programmable Logic

In this chapter, three out of the four DIP switches located on the Z-turn board will be used as

select inputs to a multiplexer (MUX). The MUX will light a combination of LEDs according to

the combination of the switches’ inputs.

This chapter will focus on the interface part of the switches with Programmable logic and

therefore the VHDL code is simple.

The process how to create a project together with how to include a VHDL source file has

already been illustrated in previous chapters, so this will not be covered here.

Code snippet 4.1 shows the VHDL code to implement a MUX in hardware. The LEDs and the

switches are both data busses.

Code Snipper 4. 1: VHDL Code of a simple MUX

Create a block Design: This has already been shown in previous chapters, so it will not be

repeated here. Make sure to include both the Zynq Processing System and the VHDL module

(the MUX).

Figure 4. 1: Adding the VHDL module

1) Right click on the canvas

2) Choose Add Module from list

2

The adjacent window pops up. Select the VHDL

module of the MUX, then click on OK.

Click on Run Automation at the top of the canvas

and click on OK.

Create a hardware wrapper as shown in Figure 4.2.

Figure 4. 2: Creating a hardware wrapper for the block design

Save the design.

Figure 4. 3: The Full circuit diagram

3

Figure 4.2 shows the circuit diagram for this project. Note that FCL_CLK0 is connected to

M_AXI_GP0_ACLK and S_AXI_HPO_ACLK. Note also that the MUX will be implemented in

combinational logic, therefore no clock signal is required.

Click on Run Implementation

If there are no errors then when prompted to open the implemented design, click on OK.

Figure 4. 4: Implementation Ready

Click on OK for the above window. Choose the I/O Ports tab and click on the arrow (>) of both LEDs_0

and sw_inputs_0.

Figure 4. 5: I/O Tab

4

Figure 4. 6: Pinouts of the system

To arrive at Figure 4.6, one has to do the changes illustrated step by step in Figures 4.7.

Figure 4. 7: Changing the operating voltage of the IOs and their pinouts

Figure 4.7 shows that the pinouts for the LEDs are changed to match the location of the LEDs

on the Z-turn board. Apart from that one must change the operating voltage for both LEDs

and switches to LVCMOS33. This will avoid errors later.

Since the constraints file was changed, Vivado asks to save the changes in a different

constraints file. Give a name to the new constraints file.

Figure 4. 8: Name the new constraints file

5

Double click on generate bitstream so that the .bit file is created. When the bitstream is

created, one has to export the hardware including the bitstream file, then launch SDK.

Figure 4. 9: Exporting the hardware and Launching SDK

Since the Zynq Processing System is not used in this project, there is no need to create a C

code project. All one must do after the .bit file is generated, and the project is exported, is

create a FSBL project in SDK and create a boot image from the FSBL project. This is shown

in Figure 4.10.

Figure 4. 10: FSBL project

The steps to create a First Stage Boot Loader project has been described in chapter 1 so

there is no need to show how it is done here.

After the Boot image file is created, it

can be found in the project → SDK

→ FSBL project →Bootimage folder.

Figure 4. 11: Create a Boot Image File

Page 1 of 8

Using the DIP switches with the Processing System

In this chapter, the Processing System will monitor the state of the DIP switches which are connected

to the Programmable Logic part of the Zynq 7. According to the combination of the state of the

switches, the tri-colour RGB LEDs, which are also connected to the Programmable Logic will light to

indicate which of the switches is active. The RGB LEDs are connected to pins R14, Y16 and Y17 while

the switches are connected to J15, G14, T19 and R19. These were derived from the schematic diagram

of the Z-turn board.

The following stages have been discussed in previous chapters so they will not be included again

here.

1) Create a Vivado Project

2) DO NOT create a VHDL file

3) Click to create a block design

4) On the canvas click on the plus-sign (+) in the middle

5) Write Zynq in the field of the pop-up window then select the Zynq processing system from

the list available

6) Right-click somewhere on the canvas and left-click on add IP

7) Write AXI GPIO in the field provided in the pop-up window

8) Select the AXI GPIO from the selection list

9) Double-Left-click in the middle of one of the AXI GPIO blocks and the pop-up window in

Figure 5.1 pops up.

Figure 5. 1: Setup of AXI block

Figure 5.1 shows the AXI block named axi_gpio_0. This AXI block has two channels named GPIO and

GPIO2. Both channels are 32 bits wide.

The drop down menu shows that the AXI block can be connected to the external peripherals according

to the Z-turn board’s support files which the user must download and install in the Vivado path so that

Vivado would know which type of dev-board, one is using and therefore there are presets that could

be utilized. This was discussed in chapter 1.

Since the preset configurations are going to be kept, then GPIO and GPIO2 will consist of three outputs

and four inputs respectively.

Page 2 of 8

Figure 5. 2: AXI block channels configured as input and output

As shown in Figure 5.2, the channels within the AXI GPIO block assume their directions whether they

are inputs or outputs automatically if the presets are used! note rgb_led and sws_4bits assigned to

the pins according to the Board Support files!

Whenever there is an AXI block, one must include the AXI interconnect block together with the

Processor System Reset block. This will make life easier at a later stage when compiling the project. So

by right-clicking on the canvas and selecting the ADD IP for both cases, one will be able to include

these two blocks in the design. Make sure to reduce the number of Master interfaces of the ACI

interconnect block from 2 to 1 as shown in Figure 5.3.

Figure 5. 3: Reduce the number of Master Interfaces in the AXI Interconnect Block

It is very important to note that, the user is not restricted to what is available on the dev-board
bought! Because if “custom” is selected from the drop-down list, then it will become a free 32-bit
GPIO which can be connected to any external peripheral.

10) After setting up the AXI blocks, one needs to click on Run Auto-Connection button on the top

of the canvas. This will route all the blocks to interface the Zynq Processing System with the

AXI GPIO blocks.

Page 3 of 8

11) Now point the mouse to the pins of the AXI GPIO blocks and one by one, right-click and click

on “make external”.

12) Do not forget to create a hardware wrapper by right-clicking on the block design and select

“create hardware wrapper” from the list

13) After all the above is done, double-click on “Run implementation”.

14) When prompted to open the implementation design, click on OK because from the

implementation screen, one can designate the appropriate pin assignments according to the

schematics of the dev-board. However, this time, since only the presets of the board are used,

the pin assignments should be already correct. It is not a bad idea if one would double-check

that the pin assignments are correct!

15) At this point all that needs to be done is to generate the bitstream file.

16) After the bit stream is successfully generated, the project should be exported and the

bitstream included as shown in Figure 5.3.

17) Then SDK could be launched from within the project. The SDK should be resident to the project

itself so click on OK when prompted.

Figure 5. 4: Export Hardware include the bitstream file

Once SDK is opened it will immediately open a project for the hardware created in Vivado. At this

point one needs to create a First Stage BootLoader Application from the file menu.

18) In SDK, create a FSBL application

19) Then create a hello-world application

20) Enable UART 1 from the Board Support Package of the Hello World code application by right

clicking on the hello-world application project then select change the referenced BSP

Points 18 to 20 have already been shown in previous chapters.

Page 4 of 8

Now the software part

The focus of this chapter is on this part because the previous parts should by now be familiar with the

learner. So first include the libraries for the AXI GPIO block. This is called gpio_v4_3 and could be found

in the path shown in Figure 5.5

Figure 5. 5: Path to find the AXI GPIO library

All the functions that control the AXI GPIO block are listed in the library shown in Figure 5.5 above. For

this project, the two LEDs connected to MIO 0 and MIO 9 will also be used. Incidentally these two LEDs

are connected to pins E6 and B5, however nothing should be done cause its already part of the

constraints file due to the board support files.

The xgpiops.h header files are included in the C source file to have access to gpiops_v3_3 library or

the MIO port pins. The xgpio.h is included to have access to the Programmable Logic pins via the AXI

GPIO block.

When the processor enters the delay function, it till loop in the delay for 1 million times and then

returns to the main program. That way, the main program is slowed so the LEDs can be seen blinking.

Next initialize the MIO port and the AXI block as shown in the code on the next page.

Page 5 of 8

Code Snippet 5. 1: Initializing the MIO port

The above function is found in xgpiops_sinit.c file. The argument u16 DeviceId is found in xgpiops_g.c

file. The original function is the following:

XGpioPs_Config *XGpioPs_LookupConfig(u16 DeviceId)

XGpioPs_Config is the return type of this function so this function must be equated to a pointer that

has the same attributes as XGpioPs_Config. This is done by declaring a pointer of the same type at the

beginning of the main () and equate that pointer to the above function. So, declare the variable:

XGpioPs_Config *ConfigPtr;

Then equate it to the function:

ConfigPtr= XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

After the LookupConfig(), one has to initialize the port. This is done by

s32 XGpioPs_CfgInitialize(XGpioPs *InstancePtr, XGpioPs_Config *ConfigPtr,u32 EffectiveAddr)

The above function returns a s32 value so one must declare a variable of type s32 at the beginning of

the main () and equate it to this function. This is done below:

s32 status;

XGpioPs *InstancePtr must also be declared at the beginning of the main (), like so:

XGpioPs myPSGpio;

XGpioPs_Config *ConfigPtr has to be replaced with ConfigPtr like before and for u32 EffectiveAddr,

one must write ConfigPtr -> BaseAddr. This was defined in xgpiops_hw.h file.

The IF statement that follows will check whether the previous function has been successful. If not, the

program will stop there and nothing else happens.

Now to initialize the AXI GPIO block, the following function found in xgpio_sinit.c must be used.

int XGpio_Initialize(XGpio * InstancePtr, u16 DeviceId)

Page 6 of 8

again, the above returns a variable or type int and therefore such a variable has to be declared at the

beginning of the main (). The XGpio * InstancePtr must be replaced with an instance pointer that must

be declared as well. This is shown in the following declarations:

XGpio myGpio;

And this should be written with an ampersand (&) sign in front of it.

int success;

The device ID should be copied from xgpio_g.c file. The complete statement is shown below:

Just like for the initialization of the MIO port, one can use an IF statement to verify the success of the

initialization. Here it is not included; however it is a good idea that it will be done.

From xgpiops.c file, use

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

The above function does not expect a return variable, so it does not have to be equated. For the

instance pointer argument should be replaced with &myPSGpio, the u32 Pin should be replaced with

the pin number – in this case 0 since one of the LEDs is connected to bit 0 and the direction argument

should be filled with 1 because it defines an output while 0 defines an input.

Now as an observation, even though the project works, however since the last argument is defined as

a 32-bit argument, one must write it in 32-bit form so it would be advisable to write the second

function for MIO 9 as follows:

XGpioPs_SetDirectionPin(&myPSGpio,9,0x00000200); // MIO[9] set as output

Or to be even safer one should use the bank function and not the individual pin function as follows:

void XGpioPs_SetDirection(XGpioPs *InstancePtr, u8 Bank, u32 Direction)

where XGpioPs *InstancePtr is replaced with &myPSGpio as before, the u8 Bank will be replaced

with 0 because it is bank 0 and u32 Direction will be replaced by 0x00000201

XGpioPs_SetDirection(&myPSGpio, 0, 0x00000201);

It is time to enable the outputs so from xgpiops.c file copy:

void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)

XGpioPs *InstancePtr is replaced with &myPSGpio, u32 Pin is replaced with 0 and 9 respectively in

different function calls, and u32 OpEnable is replaced with 1 declaring that the output is now enabled.

Page 7 of 8

Now for the AXI GPIO block, one only has to set the direction of the individual channels as a whole

and not individual pins. This is illustrated below:

Code Snippet 5. 2: Setting the AXI GPIO direction

The function can be found in xgpio.c file.

void XGpio_SetDataDirection(XGpio *InstancePtr, unsigned Channel,u32 DirectionMask)

XGpio *InstancePtr is replaced with &myGPIO, channel argument is replaced with either 1 or 2. 1

represents GPIO channel while 2 represents GPIO2 channel. U32 DirectionMask determines the pin

direction – in the AXI GPIO case, logic 0 represents that pin is an output while logic 1 means that the

pin is an input. It is the reverse for the MIO port!

The code snippet 5.2 shows that channel 1 is declared as output while channel 2 is declared as input.

Now for the while (1) code. A while (1) statement defines an infinite loop. This means that the

microcontroller will continue looping inside this loop forever. The code must check the state of the

switch-bank and according to the state of each switch, it will light a combination of the RGB LEDs. To

check the state of the switches one must read the whole channel and filter out the un-needed bits.

This is called Bit-Masking where a bitwise-AND-function is done with individual bits of the channel. By

ANDing with 0 all the bits that are not of interest will be discarded while when ANDing with 1 – the

bits will be considered.

An if statement was used that selects the pattern of the LEDs according to the state of the switches.

The bank-read function was used to read the state of the bank as a whole shown below:

u32 XGpioPs_Read(XGpioPs *InstancePtr, u8 Bank)

 it returns an unsigned 32-bit variable containing the state of the whole channel. Again XGpioPs

*InstancePtr is replaced by &myGPIO while u8 Bank is replaced by the channel number, in this case 2

because that is where the switches are assigned. In the same statement the returned value from the

read function is immediately ANDed with another variable to extract the state of the switches. It must

be noted that, the switches are effectively connected to the least significant nibble of the channel.

The code lights the LEDs connected to the MIO port if the combination of the switches does not match

any from the if statements, otherwise the MIO LEDs will be switched off while the LEDs on the

Programmable Logic part will reflect the combinations of the switches’ inputs. Code is show in the

next page.

Page 8 of 8

Page 1 of 3

Interfacing with the Button Switch on the Z-turn board

The Z-turn board has 2 button switches. Both switches are active low. One of these button switches is

connected to the Reset pin of the Zynq 7 while the second button switch is designated as USER button

and therefore one could use it in his projects.

The procedure to create a Vivado project, how to create a block design and how to include the Zynq

Processing System is already covered in previous chapters. Do not forget the create a hardware

wrapper before generating the bitstream file. Figure 6.1 shows a typical system.

Figure 6. 1: Hardware System

The block diagram shows a separate VHDL module created in the Programmable Logic. This module is

used to test whether the boot image file has been loaded in the Zynq 7 properly, so for this project,

the VHDL module could be removed. The reset switch of the VHDL module is not the same reset switch

mentioned in the introduction of this chapter.

Notice also that the button switch connected to MIO 50 is not seen in the diagram just like the LEDs

connected to MIO 0 and MIO 9. These are default in the constraints file generated by the Board

Support Files.

Figure 6. 2: Part of the constraints file

Figure 6.2 shows part of the constraints file. If the VHDL module was not included in project, all that

had to be done is just generate a bitstream file straight away, however since in this project, a VHDL

module was also included, a new constraints file was created to accommodate the changes in the

Programmable Logic part.

The USER button switch is connected to MIO 50. The pin is connected via a pull up resistor to 1V8. For

this particular project, leave the default voltage of 1V8 in the IO settings in Vivado as shown in Figure

Page 2 of 3

6.2. Generate a bitstream file, export the hardware including the bitstream file and Launch SDK from

within the Vivado project.

In the following section, the software part and its intricacies will be discussed.

The Software

In SDK, the usual FSBL application has to be created as part of the project. After that create a new C

project following the usual steps as described in previous chapters.

The gpiops_v3_3 library will be used in this project. Therefore, include the xgpiops.h file as usual.

Initialize the MIO bank as shown in the following code. Detailed explanation of this code has already

been covered in previous chapters.

Code Snippet 6. 1: Initializing the MIO bank

Even though MIO 50 is on bank 1, this does not mean that any changes to the device-ID has to be

made. It should remain the same XPAR_PS7_GPIO_0_DEVICE_ID.

Code snippet 6.1 also shows that all MIO pins have been enabled as outputs. This is convenient to

make sure that all the pins are enabled. However, it is advised to configure the pins needed as inputs

separately, by using the following function:

 void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

where XGpioPs *InstancePtr is replaced by the name of the instance in this case &PSGpio, u32 Pin

must be replaced with the pin number, in this case 50 (for MIO 50) and the direction should be set to

0 as it must be configured as input.

The author tried using the function where all the bank is configured with one function using the

 XGpioPs_SetDirection(&PSGpio, 1,0xFFFBFFFF); // only MIO 50 is set as input in bank 1

But for some reason, it did not work!

Now, since the focus of this chapter is to learn how to use the button switch on MIO 50, the C code

does a simple task to demonstrate its use. It waits for a button press then blinks both LEDs on MIO 0

and MIO 9 at the same time, once, then waits for another switch press.

To read from the port, the same concept must be adopted. Use the

u32 XGpioPs_ReadPin(XGpioPs *InstancePtr, u32 Pin)

Page 3 of 3

function. This function returns a u32 value. XGpioPs *InstancePtr should be declared as shown in

previous chapters while u32 Pin should be replaced with the pin number - in this case 50 because it is

connected to MIO 50.

Code Snippet 6. 2: detecting the Button Switch

The return value of the read-pin function is stored in a variable of type u32. Since the switch is active

low, when the switch is idle (not pressed), the function returns a 1 because of the pull-up feature of

the circuit. Once the switch is pressed, it connects MIO 50 to ground and therefore the function

returns a 0. This is monitored by the IF statement. Note that the LEDs light when a logic 0 is at the

output of the pin.

Authored by Joseph Attard

Page 1 of 10

Processing System Dual AXI block control

In this chapter, two AXI GPIO blocks will be controlled from the Processing System.

This is the maximum number of AXI GPIO blocks one can use with the Processing

System because the xgpio_v4_4 library functions within SDK, only cater for two AXI

GPIO blocks. However, it must be said that each AXI GPIO block has a total of 64

IOs and therefore there is more than enough IOs with two AXI GPIO blocks!

In the meantime, one can use as many AXI GPIO blocks as the application needs,

with the Programmable Logic part of the Zynq 7. However, again this number is

limited with the number of physical IOs the Zynq 7 has, but in case of internal

connections, one can add as many AXI GPIO blocks as needed. The final circuit is

shown in Figure 7.1 below.

Figure 7. 1: final Block Design

The process to create a project and a block design has already been discussed in

previous chapters so these will not be mentioned here anymore. Also, when using

AXI GPIO blocks, one needs to include the AXI interconnect block and the Processor

Reset Block, both shown in Figure 7.1. Again, these have been explained in previous

chapters and therefore they will not be mentioned here.

One way to use two AXI GPIO blocks is to configure one of the AXI block to accept

inputs while the second AXI GPIO block can be configured to be all made up of

outputs. That way, one can have up to 64 inputs and up to 64 outputs! Do we need

more?!

In the project described in this chapter AXI_GPIO_0 block’s channel 1, is connected

to the DIP switches and therefore from the 64 inputs, only 4 are used. On the other

hand, AXI_GPIO_1 is configured as output block. The two available channels within

the AXI block are used, channel 1 is connected to the onboard piezo buzzer while

channel 2 is connected to the LEDs. Both peripherals reside on the Programmable

Logic side. To implement these settings, one must go through the following steps:

1) Double Click on the AXI Block shown in Figure 7.2

2) For channel 1 within AXI_GPIO_0, click on the drop-down menu and select

sws_4bits as shown in Figure 7.3

3) Now double click again on AXI_GPIO_1 and select the LEDs and buzzer as

shown in Figure 7.4.

Authored by Joseph Attard

Page 2 of 10

Figure 7. 2: Double Click on the AXI block

Figure 7. 3: Selecting the DIP switches

Figure 7. 4: Configuring the second AXI block

Authored by Joseph Attard

Page 3 of 10

The next thing is to assign an address to both the AXI GPIO blocks to be memory

mapped, shown in Figure 7.5 below:

Figure 7. 5: Assigning Addresses to the AXI blocks

The above is achieved if one right-clicks on the individual AXI GPIO block, and from

the menu select Assign Address. The addresses will be automatically given to the

respective AXI GPIO block. This step is also shown in one of the previous chapters.

Save the block design and create a Hardware Wrapper. Then synthesize the model.

Open the Synthesized design and check the assigned pinouts of the DIP switches,

the piezo buzzer and the LEDs. Due to the board support files, these should have the

right pin assignments.

Figure 7. 6: Pin assignment of the Buzzer

Note that the working voltage is changed to 3V3 and the box under the column called

Fixed is ticked. Also note the name of the pinout, together with the assigned pin

number P18 which is taken from the Board Support Files and therefore nothing

should be changed from this tab. The above also holds true for the switches and the

LEDs. These are explained better in Figure 7.7 and Figure 7.8 on the next page.

Authored by Joseph Attard

Page 4 of 10

Figure 7. 7: Pins assigned to the DIP switches

Figure 7. 8: Pinouts where the LEDs are connected

Note that the LEDs and the Buzzer cannot form part of the same channel within
the same AXI GPIO block because Vivado does not allow this to happen. So, to
accommodate both the RGB LEDs and the Buzzer, two channels within the same
AXI GPIO block must be used.

After saving to a new constraints file, it is time to generate a bitstream file, export

the hardware (including the bitstream) and launch SDK from within the project.

Figure 7. 9: Include the Bitstream File when exporting the hardware

Authored by Joseph Attard

Page 5 of 10

Figure 7. 10: SDK project linked to the Vivado project

Create a First Stage Boot Loader (FSBL) project, then create a C project from where

control of the AXI GPIO blocks will be done. This is what will be learnt new in this

chapter!

Again, choose the Hello World project from the list as shown in Figure 7.11.

Figure 7. 11: Choosing the Hello World project from list

Authored by Joseph Attard

Page 6 of 10

Figure 7. 12: Wait for SDK to finish compiling

Figure 7.12 is very important! One must wait for the SDK workspace to finish

building! This could be checked from the bottom-right-corner of the screen.

If the UART is needed by the C application, one must modify the Board Support

Package as shown in Figure 7.13.

Figure 7. 13: Opening the Board Support Package

Authored by Joseph Attard

Page 7 of 10

Figure 7. 14: Change to UART 1

Wait for SDK to compile the project.

The Software for this project

Open the Hello_World.c file located in the src folder in the C project. Include the

xgpiops.h and xgpio.h header files using the #include “xxxxxxx.h” directive at the

beginning of the C file.

As shown in previous chapters, now open the gpio_v4_3 folder. This contains the

library of functions that could be used with the AXI GPIO blocks. To use the MIO

port, one has to open the gpiops_v3_3 folder. Now from these two folders one can

extract or copy the functions to configure both the MIO bank and the AXI GPIO

blocks.

Code Snippet 7. 1: Initializing the MIO Bank

Authored by Joseph Attard

Page 8 of 10

Code Snippet 7. 2: Initializing the two AXI blocks

Looking at Code Snippet 7.2, one should notice that there are two instances of AXI

GPIO. These are named as PL_Gpio0 and PL_Gpio1. These are the names of the AXI

GPIO blocks!

Within AXI_GPIO1 block, two channels are used. These are named as channel 1 and

channel 2. Two different channels were needed, one to drive the piezo buzzer while

the second channel was used to drive the RGB LEDs. This is because the Board

Support information was used in this project. A workaround to be more efficient with

the IO pins, is to change the channel to custom when configuring the AXI GPIO block

within Vivado, opt for 4 outputs and these should be enough to control each LED and

the buzzer. However, in this project, the main focus is to show how to control two

AXI GPIO blocks from the Processing System.

All the variables and pointers used in above functions must be declared at the

beginning of the main () as shown in Code Snippet 7.3.

Code Snippet 7. 3: Declaring the pointers and variables

Authored by Joseph Attard

Page 9 of 10

Authored by Joseph Attard

Page 10 of 10

Code Snippet 7. 4: Main Code

Code Snippet 7.4 detects the positions of the 4 DIP switches and according to their

relative positions, a combination of RGB LEDs and the on-board buzzer are used to

determine how the DIP switches are placed. A switch-case statement is used this

time because it is more efficient than the if-else statement for this application.

All that is needed now is to save the .C file and this will start compilation. If no errors

are found, then create a Boot image file, copy it to SD card, transfer the SD card to

the Z-turn board. Power the Z-turn board, and change the DIP switches’ positions

repeatedly and notice the combination of the RGB LEDs together with the Buzzer.

Enjoy!

Chapter 8 | Joseph Attard

Page 1 of 15

XADC – The Analogue to Digital Converter Block within the 7 Series FPGAs

and the Zynq 7

ADC stands for Analogue to Digital Conversion. This means that an analogue voltage

is sampled, and this analogue voltage is represented by a decimal number. The

decimal number is not infinite because it is restricted by the number of bits. Most

common microcontrollers have 10-bit ADC peripherals however the Zynq 7 has a 12

-bit ADC and therefore the input voltage can be represented by a decimal number

from 0 to 4095. The recommended reference voltage by Xilinx for the analogue inputs

is 1.25V, however on the Z-turn board, the external reference voltage XADC_VCC is

1.8V obtained via an inductor which suppresses further any noise on XADC_VCC

supply rail. Strictly speaking, this means that the analogue signal applied to any one

of the analogue inputs should not exceed 1.8V! However, it is recommended by the

author, not to exceed the analogue input voltage by more than 1V.

The Zynq 7 SoC has internal parameters that could be sampled via the internal

XADC. These might need to be monitored if the Zynq 7 is part of a critical system to

make sure that the Zynq 7 is operating within its parameters. These internal

parameters include but is not limited to die-temperature, Auxiliary Vcc which is the

reference voltage for the auxiliary XADC channels, etc, etc. One can check Xilinx

UG480 for more information on this. Therefore, as a first XADC project, it would be

ideal to check these internal parameters, and in subsequent projects, one will

endeavour to explain more complex projects using XADC block.

Apart from checking the internal parameters, the Zynq 7 has one 12-bit channel

which is able to sample at an impressive rate of 1 Mega Sample Per Second (1MSPS).

This is called Vp_0/Vn_0 in the Xilinx literature such as the UG480, however in the

Z-turn board’s cape IO schematic, these are marked as XADC_INP0 and XADC_INN

respectively. Using the board support files, one does not have to worry about the

pinouts because they will be automatically assigned by Vivado, however one has to

be careful when reading the schematics by MYIR because they are a bit confusing!

In fact as a reference point, one should check the orientation of the 1.8V from the

header pins and also the 3V3 header pin. This check will help to determine the

orientation of Vp_0 / Vn_0 relative to the schematics offered by MYIR.

One other thing that might confuse novices is that Vp and Vn are referred to as two

separate channels. This depends on how one sees it, because if the a differential

voltage is applied between Vp and Vn, then one might still regard it as a single

channel. On the other hand, most of the analogue voltages such as those from

analogue sensors are referenced to ground (0V) and therefore Vn must be connected

directly to analogue 0V of the signal which might also be the same ground of the

digital system....and again the channel would be regarded as single as well!

Apart from this dedicated external 1MSPS channel, the Zynq 7 has another 16

analogue to digital channels referred to as auxiliary channels. In UG480, these are

named as VAUXP[0] and VAUXN[0] for channel 0, VAUXP[1] / VAUXN[1] for channel

1, etc. The analogue pins are shared with digital pins and therefore these particular

pins are multi-functional. They are also differential type and therefore one can apply

two separate voltages on AuxVp_n / AuxVn_n, and the internal op-amp will do the

subtraction between the input voltages. The second n (highlighted in italic-bold)

present the number of the auxiliary analogue input pair. These channels sample at

a maximum rate of 250 kilo-Samples per Second, and they are four times slower

Chapter 8 | Joseph Attard

Page 2 of 15

than the dedicated ADC input. Having said that, it still has a relatively high sampling

rate. From Chapter 9 onwards, this book will discuss the external analogue channels

in more detail, but for now let’s move on to see how to sample the internal parameters

of the Zynq 7.

Sampling Zynq 7 internal parameters

In this project, the internal parameters of the Zynq 7 are sampled and read from the

Processing System. These are then output on LEDs to validate the system’s operation

by making sure that the digital result is changing with every change in the input

analogue voltage. For this test, the dev-board designed by the author was used on

top of the Cape IO board by MYIR. This dev-baord was created to compliment the Z-

turn board. It has two 10KΩ preset-potentiometers and two 5kΩ preset-pots, together

with four more DIP switches, four push-to-make switches, a single seven-segment

display and a set of 18 SMT LEDs. All of these components are completely isolated

from the Zynq 7.

As always, start by creating a new Vivado project. For this project there is no need

to create a VHDL file and therefore skip those steps. When Vivado IDE is opened on

the project, one can create a block design and add the Zynq Processing System. Since

the system is going to output the decimal equivalent of the analogue input signal on

LEDs, one can include the AXI interconnect block and AXI GPIO block as part of the

schematics.

Figure 8. 1: configure the AXI interconnect block

The AXI interconnect block is configured to accept two AXI slave blocks (even though

they are called M01…see Figure 8.1), in this project only one is needed so double

click on the AXI interconnect block and the configuration window pops up shown in

Figure 8.2.

Chapter 8 | Joseph Attard

Page 3 of 15

Figure 8. 2: AXI interconnect config window

Change the number of Master interfaces to 1 and leave the page as it is. Click on OK.

This is how the diagram looks like now:

Figure 8. 3 Zynq 7 connected to AXI interconnect

then include the XADC block:

Chapter 8 | Joseph Attard

Page 4 of 15

Figure 8. 4: Adding the
XADC block

Figure 8. 5: blocks in the block design can be moved

Figure 8.5 shows that blocks can be moved even though with some restrictions. One

can left click on the object block and hover the mouse over the canvas for the object

block to move along with the mouse.

Figure 8. 6: connect the resets

Connect the reset pins of all the blocks together. A better solution is to use the

Processing System Reset block as shown in previous chapters.

Figure 8. 7: Connect the data bus 1

Figure 8.7 show how the data from the Processing System is connected to the AXI

interconnect block.

Chapter 8 | Joseph Attard

Page 5 of 15

Figure 8. 8: Connect data bus 2

Figure 8.8 shows how the interconnect block is connected to the XADC block.

Figure 8. 9: Connecting the 100 MHz clock

Figure 8. 10: Run Block Automation

Click on Run Connection Automation so that the Zynq Processing System takes the

pre-set configuration assigned in the Board Support Files.

Chapter 8 | Joseph Attard

Page 6 of 15

Figure 8. 11: Full Block diagram of the Zynq Processing System

Note that in Figure 8.11 the M_AXI_GP0_ACLK and S_AXI_HP0_ACLK are connected.

These two clocks must be connected to the same clock signal as the whole system

otherwise Vivado will generate and error.

Configuring the XADC to sample internal parameters

Figure 8. 12: XADC basic tab

Double-click on XADC wizard and change the setting from single channel to

channel sequencer. The channel sequencer is selected so that the XADC block will

hop from one parameter to the next. The ADC result will be stored in respective status

registers and therefore when one would like an ADC result of a particular parameter,

the latest result will be retrieved.

Note at this point that the result resides between bit 4 and bit 16 of the status
register and therefore this must be shifted to the right by four places to obtain the

right binary weights of the bits.

Chapter 8 | Joseph Attard

Page 7 of 15

Figure 8. 13: ADC setup tab

For the ADC setup page, it would be a good idea to configure the XADC block to

sample at least 16 times before the result is available to the user. Leave the rest of

the settings as they are.

Figure 8. 14: ADC Alarms Tab

The Alarms could be switched off my removing the tick from the boxes.

Chapter 8 | Joseph Attard

Page 8 of 15

Figure 8. 15: ADC Channel Sequencer Tab

Figure 8.15 shows a list of ADC channels that one can include in the sequencer

settings. At that time the author was just testing so to correct the statements done

in Figure 8.15, the internal parameters that must be sampled, could be ticked in the

list and these will be enabled. However, it must also be said that even though in

Figure 8.15 the internal parameters were not selected, they could still be sampled

from the processing system.

Create a hardware wrapper.

After the hardware wrapper, the hardware is exported by File→ Export → Export

Hardware. Then launch SDK from the File menu.

The Software

Figure 8. 16: List of libraries in SDK

After launching SDK, do not forget the create a FSBL

application and a Hello World application. The XADC library

is located at the very bottom of the list of folders as shown

Figure 8.16. Double click on it to find all the support files

for this XADC block.

Chapter 8 | Joseph Attard

Page 9 of 15

Figure 8. 17: Include Directives

Initialize the XADC peripheral using the following instructions:

From: xadcps_sinit.c get the lookup function:

XAdcPs_Config *XAdcPs_LookupConfig(u16 DeviceId)

This function returns an XAdcPS_Config type and therefore one must declare it at

the beginning of the main function.

XAdcPs_Config *XADC_ConfigPtr;

The u16 DeviceId is listed in xadcps_g.c and in the parameter-list it should be

replaced by: XPAR_PS7_XADC_0_DEVICE_ID. So, the complete statement should

look like:

XADC_ConfigPtr=XAdcPs_LookupConfig(XPAR_PS7_XADC_0_DEVICE_ID);

Another part of the initialization process is the configuration function that is found

in xadcps.c file. This looks like this:

int XAdcPs_CfgInitialize(XAdcPs *InstancePtr, XAdcPs_Config *ConfigPtr,

 u32 EffectiveAddr)

therefore, it returns an integer type and one must replace the instance pointer with

&XAdcPs-instance-pointer-name. The above statement is written as:

XADCstatus=XAdcPs_CfgInitialize(&XADCblock,XADC_ConfigPtr,XADC_Config

Ptr->BaseAddress);

To avoid unnecessary warnings, check whether the configuration initialization was

successful or not by:

If (XADCstatus!= XST_SUCCESS)

 {

 return XST_FAILURE;

 }

Chapter 8 | Joseph Attard

Page 10 of 15

The statement-listing up till now is:

Code Snippet 8. 1: Initializing the XADC block in the C application

There are some statements that are unique to the XADC initialization. This is one

of them:

The self-test function will check whether there are any problems with the XADC

by resetting the device, then writes a value in the Alarm Threshold Register, then

resets the device again. This function is found in xadcps_selftest.c and returns a

value of type int.

int XAdcPs_SelfTest(XAdcPs *InstancePtr);

selfteststatus = XAdcPs_SelfTest(&XADCblock);

selfteststatus is a variable of type int that stores the returned value of the self-

test function.

if (selfteststatus != XST_SUCCESS)

 {

 return XST_FAILURE;

 }

this will suppress the warning that we are not using the int variable

Next, stop the channel sequencer by selecting the mode to be as single channel

mode. The function resides in xadcps.c and is:

void XAdcPs_SetSequencerMode(XAdcPs *InstancePtr, u8 SequencerMode)

To select a mode for the parameter u8 SequencerMode, there is a list in xadcps.h

file.

#define XADCPS_SEQ_MODE_SINGCHAN 3 /**< Single channel -No Sequencing */

Chapter 8 | Joseph Attard

Page 11 of 15

Code Snippet 8. 2: Definintion statements found in xadcps.h file

The next thing is to disable the alarms by using the function

void XAdcPs_SetAlarmEnables(XAdcPs *InstancePtr, u16 AlmEnableMask)

found in xadcps.c file.

XAdcPs_SetAlarmEnables(&XADCblock, 0x0000); //0 = disables alarm ; 1 = enables alarm

Restart the sequencer and make it sample internal parameters such as Zynq 7

temperature, VCCINT etc.

XAdcPs_SetSequencerMode(&XADCblock, XADCPS_SEQ_MODE_SAFE);

Select the channels to sample:

The function is found in xadcps.c file.

int XAdcPs_SetSeqChEnables(XAdcPs *InstancePtr, u32 ChEnableMask)

and the parameters are found in xadcps_hw.h file.

Important Note:

Each function carries with it a description and in the description, there will be a note

indicating from where the parameters can be selected giving the name of the header

file and also how the parameters are named. An example follows:

Chapter 8 | Joseph Attard

Page 12 of 15

There are some ready-made macros that one can use that convert raw ADC data

into the quantity one would like to measure such as the internal temperature of the

processor etc. These macros are found in xadcps.c file.

u16 XAdcPs_GetAdcData(XAdcPs *InstancePtr, u8 Channel);

Code Snippet 8. 3: ADC result function

Chapter 8 | Joseph Attard

Page 13 of 15

Declare a variable of type 16 bit unsigned (u16) at the beginning of the main

function. Then use it to store the return variable of the XAdcPs_GetAdcData().

The returned data from this function is just a decimal number from 0 to 4095 since

it is 12 bits wide. This number must be processed again to reflect the analogue

quantity it is monitoring. There are two macros that use 32-bit unsigned numbers,

and therefore the returned number from the above function will be stored in a 32-bit

number not in a u16 data type!!

The instance pointer is always the one declared somewhere above:

&XADCblock and the u8 Channel is taken from xadcps.h Underneath there is a

list of u8 channels:

Code Snippet 8. 4: ADC Channel List

The macro that converts the 12-bit ADC data into temperature resides in xadcps.h.

From the comments that accompany it, it was determined that it returns a float

type.

Code Snippet 8. 5: Raw to Temperature Macro

Chapter 8 | Joseph Attard

Page 14 of 15

Note that AdcData is of type u32 while the returned data from the previous
function XAdcGetAdcData() is of type u16. However, this might not impose a

problem since the data will be stored in the correct word position within the 32-bit
word.

Because the above macro accepts u32 data, the print() already written in the hello-

world program had to be changed to printf() because the 32-bit raw data is not

supported in the print() function. On the other-hand, the printf() supports %lu which

means unsigned long data type.

The whole software program is listed below:

Chapter 8 | Joseph Attard

Page 15 of 15

while(1)
 {
 rawCPU_temp = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_TEMP);
 CPUtemp = XAdcPs_RawToTemperature(rawCPU_temp);
 printf("raw temp data: %lu while temp in degree Celcius: %f\n\r",rawCPU_temp,CPUtemp);

 rawintVCC = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VCCINT);
 intVCC = XAdcPs_RawToVoltage(rawintVCC);
 printf("raw intVCC data: %lu while internal VCC: %f\n\r",rawintVCC,intVCC);

 rawBRAMvoltage = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VBRAM);
 BRAMvoltage = XAdcPs_RawToVoltage(rawBRAMvoltage);
 printf("raw BRAM voltage: %lu while BRAM voltage: %f\n\r",rawBRAMvoltage,BRAMvoltage);

 rawAUXVCC = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VCCAUX);
 AUX_VCC = XAdcPs_RawToTemperature(rawAUXVCC);
 printf("raw Aux VCC: %lu while Aux VCC: %f\n\r",rawAUXVCC,AUX_VCC);
 printf("\r\n");
 printf("\r\n");
 delay();

 }

 cleanup_platform();
 return 0;
}

void delay (void)
{
 for(unsigned i = 0; i < 100000000; i++)
 {
 //do nothing
 }
}

It must be mentioned here that the raw data from the XADC should be shifted

to the right by 4 places. This is not shown in this program however, it will be

pointed out in the future programs.

Chapter 9 | Joseph Attard

Page 1 of 20

Chapter 9 Sampling External ADCs from the Processing System

The previous chapter dealt with sampling the internal parameters of the System on

Chip. As promised, this chapter will show how to monitor external analogue inputs

from the Processing System. Later, the same will be done, but this time from the

Programmable Logic.

So, create a project as shown in previous chapters. Do not include any VHDL

modules. Once the Vivado project is opened, click on Create a Block Design. In the

block design include the Zynq Processing System, the AXI interconnect and the

XADC wizard.

The AXI interconnect should be configured to have one master output as shown in

Figure 9.1 below.

Figure 9. 1: Configure the AXI interconnect block

This time, the Processing System Reset Block will be added in the design. This will

help reduce the warning and errors.

Figure 9. 2: Including the Processing System Reset Block

Now connect the resets of the AXI interconnect to the dedicated reset on the

Processing System Reset block as shown in Figure 9.3 on the next page.

Chapter 9 | Joseph Attard

Page 2 of 20

Figure 9. 3: Connecting the Reset of the AXI interconnect block

Now, connect the reset of the XADC wizard block to the Processing System Reset

block as shown in Figure 9.4 below.

Figure 9. 4: Connecting the Reset of the XADC

Now connect the Reset of the Processing System to the Reset block as shown in

Figure 9.5 on the next page.

Chapter 9 | Joseph Attard

Page 3 of 20

Figure 9. 5: Connecting the Reset of the Processing System

Click on Run Block Automation.

As always make sure the tick

on Apply Board Preset box is

present.

Now connect all the clock

signals to the 100 MHz

clock output from the

Processing System.

Figure 9. 6: Connecting the clocks

Chapter 9 | Joseph Attard

Page 4 of 20

Figure 9. 7: Connecting the Data lines

Figure 9.7 shows how to connect the data lines between the Zynq Processing System,

the AXI interconnect block and the XADC wizard.

The next thing to do is to configure the XADC wizard, so double click on the XADC

block and follow the instructions in the Figures underneath.

Figure 9. 8: Select Channel Sequencer

Figure 9. 9: Enable an average of 16

Chapter 9 | Joseph Attard

Page 5 of 20

Figure 9. 10: Selecting the Channels

Figure 9.10 shows that the channels of interest must be selected from the list. The

Auxiliary pins are not shown in Figure 9.10 but they are selected. Now close the

XADC wizard configuration. Click on Run Block Automation.

For the window of Figure 9.11, click on OK.

Figure 9. 11: Warning Box

Chapter 9 | Joseph Attard

Page 6 of 20

Now, the Vp/Vn pins must be connected to

their respective external pins, to do so, hover

the mouse on Vp/Vn pins on the XADC

wizard block, right click and then select Make

External as shown in Figure 9.12.

Figure 9. 12: Connect Vp/Vn to their external pins

Figure 9. 13: Showing the External Pins of the ADCs

Note in Figure 9.13 that the auxiliary channels 1 and 8 have been enabled together

with the dedicated Vp/Vn ADC. It would be a good idea if the design is validated.

Figure 9. 14: Critical Warnings

If the warning in Figure 9.14 are

displayed, then follow their

instructions and use the address

Editor to assign memory

locations to the XADC block.

This is illustrated in Figure 9.15

on the next page.

Chapter 9 | Joseph Attard

Page 7 of 20

Figure 9. 15: Assigning an address to the XADC block

Figure 9. 16: Choose the Assign Address from list

Figure 9. 17: The XADC block is assigned an address

Now it is a good idea to validate the design from the Block Design Menu.

Figure 9. 18: Validation Successful message

Now create a Hardware Wrapper.

Chapter 9 | Joseph Attard

Page 8 of 20

Figure 9. 19: Steps to Create a Hardware Wrapper

Figure 9. 20: Making sure that updates are done

Figure 9.20 shows an important step. If the updates are not done and the synthesis

begins, Vivado will generate an error. So, make sure that the Updating message

disappears before clicking to synthesize and implementation.

Figure 9. 21: Pinouts

Figure 9.21 is just a check to see that the pinouts assigned automatically by Vivado

tally with the schematics. Make sure that the Fixed boxes are ticked. Now click on

Generate Bitstream File and wait. If there are no errors and the bitstream file is

generated successfully, export the hardware by File → Export → Export Hardware.

When it is done exporting the hardware, Launch SDK from within the Vivado project.

Chapter 9 | Joseph Attard

Page 9 of 20

The Software

In SDK, create a new FSBL project and a new Hello World project. These two steps

have been shown in previous chapters. For this project, the ADC readings will be

shown on a serial terminal so the following BSP adjustments must be made. This

has been shown before in previous chapters.

Figure 9.23 shows the

steps to enable UART 1

instead of UART 0. This is

because the Z-turn board

has an interface chip for

serial data communication

connected to the pins of

UART 1.

Click on OK underneath

and wait for the project to

compile again.

Now open the HelloWorld.c file.

Figure 9. 22: Open the BSP Setting

Figure 9. 23: Change to UART 1

Chapter 9 | Joseph Attard

Page 10 of 20

Figure 9. 25: Location of the XADC Library

Figure 9.25 shows the location of the XADC library within the C project environment.

It also shows the functions associated with the XADC block.

From the project tree double click on xadcps_sinit.c file. Copy the lookup function

name in the helloworld.c file.

XAdcPs_Config *XAdcPs_LookupConfig(u16 DeviceId)

Now this function returns an XAdcPs_Config type. Therefore, one must declare a

variable at the beginning of the main function and equate this statement to the

variable. Also, a parameter of type u16 DeviceId should be passed to this function.

Figure 9. 24: Include the XADC library

Figure 9. 26: Location of the Lookup function

Chapter 9 | Joseph Attard

Page 11 of 20

This parameter is obtained from:

Figure 9. 27: Location of the u16 Device ID

So, the proper statement should be:

XADC_configPtr = XAdcPs_LookupConfig(XPAR_PS7_XADC_0_DEVICE_ID);

Also, part of the initialization is the function in Figure 9.28.

It returns an int type, therefore this must be declared as a variable at the beginning

of the main function. Apart from that, there is an instance-pointer of type XAdcPs.

This must also be declared on top of the main function. The complete statement

should look like Code Snippet 9.1:

Figure 9. 28: Location of the Initialization Function

Chapter 9 | Joseph Attard

Page 12 of 20

Code Snippet 9. 1: Complete Initialization statement

Notice the instance-pointer: &XADCperipheral

Self-Test

The self-test function is used to reset the XADC and to check whether the XADC is

healthy. This will return a variable of type int and therefore this must be equated to

another variable that should be declared at the beginning of the main function. This

function resides in:

Code Snippet 9. 2: Location of the Self-Test Function

Code Snippet 9. 3: Writing the Self-test function in
code

Chapter 9 | Joseph Attard

Page 13 of 20

Figure 9. 29: Location of the Sequence Function

Figure 9.29 shows the location of the sequencer function. The XADC has to be

stopped so that the configuration registers could be written to, to configure the XADC

block. The function resides in xadcps.c. The parameters are listed in the comments

list as illustrated in Figure 9.29.

As the comments in Figure 9.29 show, the XADC sequencer is stopped if the

parameter passed to the SetSequence() is SINGCHAN.

The XADC should be put into safe mode so that the configuration registers could be

changed:

Code Snippet 9. 5: XADC in Safe Mode

Code Snippet 9. 4: Stopping the XADC

Figure 9. 30: Location of the Alarms Function

Chapter 9 | Joseph Attard

Page 14 of 20

The first configuration is to disable the alarms. 0 will disable the alarms while 1 will

enable the alarms.

Code Snippet 9. 6: Alarms Function

Figure 9.31 shows the location where the function to enable the individual channels

is located. The comments give a hint on how to identify the parameters that could be

passed to this function and their location. This function returns a value of type int

and therefore this must be declared again at the beginning of the main(). The

parameters are listed in the Figure 9.32 and can be found in xadcps_hw.h file.

The channels’ enable function should tally with the hardware we enabled in the

XADC wizard which is part of the hardware-block-design. This is shown in Figure

9.33 again, on the next page, so that the student will not get confused.

Figure 9. 31: Location of Channel Enable Function

Figure 9. 32: Channel Parameter List

Chapter 9 | Joseph Attard

Page 15 of 20

Figure 9. 33: ADC channels

Again, the AUXVp01/AUXVn01 and
Vn8AUXVp08/AUXVn08 are not shown

in Figure 9.33, however they are
included so make sure that in the
function parameters, this will be
included!

Code Snippet 9. 7: Syntax to Enable the ADC channels

This time, the Processing System will sample both internal parameters and also

external ADC channels in the same program! Now, the sequence by which the

channels will be sampled has to be configured as wel. The function that takes care

of this resides in xadcps.c file. The parameters can be found in xadcps_hw.h file.

Figure 9. 34: Location of the Sampling Sequence Function

It is a good idea to copy the parameters of the channel enables function in the

function shown in Figure 9.34.

Chapter 9 | Joseph Attard

Page 16 of 20

Code Snippet 9. 8: Sampling Sequence

The sampling will start from the first parameter. Once its finished and it stores its

digital equivalent in the respective status register, the XADC samples the next

channel according to the list of parameters shown in Code Snippet 9.8. It continues

to sample the channels one after the other until all the channels are sampled. The

XADC will start all over again if the next function is included.

Code Snippet 9. 9: Function to sample continuously

The get data() is used to get the 12-bit decimal equivalent of the quantity you are

monitoring. Its location is shown in Figure 9.35.

Figure 9. 35: Location of the GetADCData function

The parameters for the above function are stored in xadcps.h and are shown Figure

9.36.

Chapter 9 | Joseph Attard

Page 17 of 20

Figure 9. 36: Location of the parameters for the GetADCData Function

One other thing that needs to be clarified is the fact that get_data() is returning a 16

bit variable, however it has to be stored in a 32 bit variable. This is because the built-

in macro converts the 12-bit data from the ADC into either voltage or temperature

and the macro itself takes care to do the conversion, which is hidden from the user.

Figure 9. 37: Location of the built-in macro that converts raw data into temperature

Figure 9. 38: Location of the built-in macro that converts raw data into voltage

Chapter 9 | Joseph Attard

Page 18 of 20

The parameter list provided in the header file did not include all the auxiliary channel

definitions and therefore the author had to include them manually. UG480, states

that auxiliary channel 0 has an address of 16. The addresses continue to increment

such that channel 15 has an address of 31. Figure 9.39 shows the definition

statements that where included by the author in the header file. The list is shown in

the red box.

Since the definition statements where included manually by the author, it is

imperative to either click on Save all or make sure that the header file is saved before

saving the actual C file.

The following is the get_data() together with the macros in the while (1) loop:

Code Snippet 9. 10: Sampling the ADC channels

Figure 9. 39: Adding the channel numbers manually

Chapter 9 | Joseph Attard

Page 19 of 20

Print() must be changed to printf() statement because this will generate an error of

too many parameters. Create a boot image file and copy it to SD card. What follows

is the whole code:

Chapter 9 | Joseph Attard

Page 20 of 20

So, the focus of this chapter was to show how to sample internal parameters, the

dedicated ADC channel and two auxiliary ADC channels from the Processing System.

During the discussion, the short comings encountered by the author were

highlighted and their workaround explained. It must be said that the voltage and

temperature macros offered by Xilinx are not so reliable and one should write his/her

own functions to convert to temperature and voltage. In the next chapters, the XADC

will be sampled from the Programmable Logic part.

Chapter 10 | joseph attard

P a g e 1 | 32

Monitoring two ADC channels with data simultaneously shared between the

PS and PL parts of the Zynq 7

Introduction

In this chapter, two external analogue inputs will be monitored by both the

Processing System part and the Programmable Logic part of the Zynq 7. It will be

shown how easy it is to use the XADC block simply because the advanced hardware

included in the XADC makes life so much easier for the design engineer!

Creating a Vivado Project

There are sections in chapters 1 and 2 that explain in detail how to create a Vivado

project both for the PL part and also for the PS part, so this part of the document will

be skipped.

After creating the project and also creating a VHDL source file as part of the project,

one should wait for Vivado to update as shown in Figure 10.1 below:

Figure 10. 1: Wait for Vivado to Update

Figure 10.2 shows the location of the VHDL module within the project. Double click

on it to edit it.

The XADC module will be configured to run in continuous mode, therefore it will

output the ADC result in 12-bit digital form, together with the corresponding

channel-address. Since the main objective of this exercise is to learn how to configure

the XADC block and interface it with both PS and PL parts of the Zynq 7, the VHDL

module will output the raw 16-bit result directly to the LEDs. It is known that the

XADC result resides between bit 4 and bit 15 and therefore some form of processing

is needed to obtain the actual value as a decimal number! The Zynq Processing

system will do its own processing (shifting to the right by 4 bits) on the XADC data

while the VHDL module will do its own separate processing. Code snippet 10.1 shows

the VHDL code to implement a simple multiplexer because the objective of this

Figure 10. 2: Location of the VHDL Module

Chapter 10 | joseph attard

P a g e 2 | 32

project is to make sure that the XADC data is available for both PS and PL at the

same time! Also note how simple concept used to implement shifting of data in VHDL!

Code Snippet 10. 1 VHDL
module

Note: One can

change the names of

the IO terminals of

the VHDL module

any time.

A simple method to

output digital results

to an output port,

one can use a

multiplexer (MUX).

By using a

multiplexer, there is

no issue of timing constraints or worrying that the XADC block is not in sync with

the VHDL module because the multiplexer used will use the channel address of the

analogue input as the select bits to select which digital data it will be output.

For this experiment a custom-made development board designed by the author
was connected to the cape IO board by MYIR. It was fully isolated from both the
inputs and the outputs, to make sure that the pins of the Zynq 7 will never get
damaged. This dev-board extension had 18 LEDs driven by opto-transistors, 4 pre-
set pots, 4 push-to-make switches, 4 slide switches and a single seven segment
display.

Save the VHDL module and create a block design.

Note: One could start from the block diagram and then write the VHDL code after.
There is no priority!

Figure 10. 3: Creating a Block Design

Chapter 10 | joseph attard

P a g e 3 | 32

Click on “create a Block Design”. In the following pop up window give a name to the

block design and then click on OK.

Adding the Zynq PS system

The Zynq PS system must be added to your block design because it will download

the .bit file of the VHDL part of the project to the FPGA part of the Zynq SoC. Apart

from that, in this project, the Zynq 7 Processing System will be used to monitor in

parallel the ADC data from XADC.

Figure 10. 4: Adding an IP to the Block Design

To add an IP on the canvas, one can

either hover the mouse on the + sign in

the middle or on the + sign that is part

of the menu. Click on either one of

them and a new pop up window pops

up.

 Figure 10. 5: Calling the IPs

Write the name of the IP in the field

provided and double click on it to add it

to the block design.

Figure 10. 6: Zynq PS is part of the Block
Design

Click on Run Block
Automation

Chapter 10 | joseph attard

P a g e 4 | 32

Figure 10. 7: Leave all the Presets

Figure 10. 8: Connect the AXI clocks to the
Zynq PS

For this project, two AXI blocks will be used, one to interface the XADC block with

the Zynq Processing System and one to send the processed XADC result to the VHDL

module. The XADC will output the XADC result in 16 bit format together with the 6

bit channel address. The other AXI block is used to interface the Processing System

with the Programmable Logic fabric. Another way to add an IP block is shown in

Figure 10.9

Figure 10. 9: Adding another IP block

To add another IP, right-click on the canvas and select

Add IP from the menu.

Where there is an AXI block, there should also be an AXI interconnect block. This

ensures maximum data rate transfer between the Zynq Processing System and the

Programmable Logic in the block-design.

Chapter 10 | joseph attard

P a g e 5 | 32

Adding the AXI interconnect Block

Figure 10. 10: Adding the AXI interconnect Block

In the field, write AXI interconnect and then double-click on it from the list.

Figure 10. 11: Change the AXI interconnect
block settings

AXI interconnect must have

two master and one slave

interface for this application.

With the adjacent settings, two AXI GPIO blocks could be connected to the AXI

interconnect. Each AXI GPIO block has two channels. In the first AXI GPIO block,

both channels will be used as input channels while the second AXI GPIO will have

its channels configured as outputs.

Chapter 10 | joseph attard

P a g e 6 | 32

Figure 10. 12: Connecting
the AXI interconnect block
to the Zynq PS

Figure 10.12

shows how to

connect the data

bus from the

Processing System

to the AXI interconnect. It is advisable to include the Processor System Reset block to

reduce the amount of warnings while synthesizing the design.

Include the Processing System Reset

Figure 10. 13: Adding the Reset block

Write reset in the field and select the

Processing System Reset by double

clicking on it.

Figure 10. 14: The PS Reset block is part of the Block Design

Now it is time to wire the three blocks together. Start from the reset pins. Connect

it to the reset output of the Processing System. This is shown in Figure 10.15.

Chapter 10 | joseph attard

P a g e 7 | 32

Figure 10. 15: Connecting the Zynq PS to the PS Reset Block

Figure 10. 16: Connecting the PS Reset with the AXI
interconnect Block

Figure 10.16 shows all the reset inputs

of the AXI interconnect block are

connected to the interconnect_aresetn []

of the Processing System block. This

makes sure that there will be minimal

delay when resetting the system.

Figure 10. 17: Connecting a few of the clock signals

All clock signals should be connected to

the same 100 MHz clock signal, emerging

from the Processing System part. This

ensures full synchronisation.

Chapter 10 | joseph attard

P a g e 8 | 32

Include the AXI GPIO

The AXI GPIO will be used to interface the PS system with XADC. Another AXI GPIO

will be used to interface the output pins located on the FPGA part of the SoC to the

PS so that the PS part will drive the LEDs connected to the PL part of the Zynq

Processing System. The LEDs should give a clear visual indication whether the ADC

result is actually reflecting a change in the analogue voltage input.

Figure 10. 18: Two AXI GPIO in the same diagram

Wiring the AXI GPIOs

Figure 10. 19: Connecting the AXI GPIO Reset

First, make sure that the AXI GPIO block reset is connected to the

peripheral_aresetn[] input.

Chapter 10 | joseph attard

P a g e 9 | 32

Then connect the S_AXI_ACLK clock

signal to all the common 100 MHz clock

of the system.

Figure 10. 20: Connecting the clocks of the AXI GPIOs

Connecting the AXI GPIO data bus to the AXI interconnect

Figure 10. 21: Connecting the first AXI
GPIO to the interconnect

This is the

communication medium

between the Processing

System and the AXI GPIO

block. It is all hidden from

the designer!

Figure 10. 22: Connecting the second AXI
block

Both AXI GPIO blocks should

be connected to the AXI

interconnect block as shown in

Figures 10.21 and 10.22.

Changing the width of the data busses of the AXI GPIOs

As discussed before, one of the AXI GPIO blocks will be used as an interface between

the Processing System and the XADC, while the other AXI GPIO block be used to

extend the external pinouts of the Processing System by using some of the external

Chapter 10 | joseph attard

P a g e 10 | 32

pins allocated to the Programmable Logic side of the System-on-Chip. The following

Figures show how to configure the AXI GPIO blocks for custom applications.

Figure 10. 23: Configuring the AXI GPIO 1

Leave the board interface as

custom.

Figure 10. 24: Configuring the AXI GPIO 2

Channel 1 will accommodate the 16-bit

ADC result from the XADC, while channel 2 accommodates the channel address from

XADC.

So, Figure 26 above shows a single AXI GPIO block consisting of two channels. One

of the channels is made up of 16 bits while the second channel is made up of 5 bits.

Note that both channels are configured as inputs.

The second AXI GPIO will also be left as custom.

Figure 10. 25: Configuring AXI GPIO 3

Configuring the second AXI

GPIO.

Chapter 10 | joseph attard

P a g e 11 | 32

Figure 10. 26: Configuring AXI GPIO 2_2

The second AXI GPIO will drive 18 LEDs

connected on the devBoard that designed

specifically for the z-turn board. The

second channel of this AXI GPIO is not

going to be used.

Including the XADC in the block design

Figure 10. 27: Adding the XADC

Right-click anywhere on the canvas

then choose Add IP.

Figure 10. 28: Call XADC from List

Write XADC in the field provided and

double click on XADC wizard.

Figure 10. 29: The XADC block

This is the original XADC block. Double-clicking on it

to configure it according to the needs of this

application.

Also, the XADC mode of communication will be

changed from AXI4 lite to Dynamic Reconfiguration Port

(DRP) between the XADC block, the PS and PL.

Chapter 10 | joseph attard

P a g e 12 | 32

Configuring the XADC block to be compatible with the software and hardware

of this project

The BASIC page:

Figure 10. 30: XADC Basic Page

In the basic page:

• change the interface options to DRP

• leave the timing mode in continuous mode.

• Change the startup channel selection to channel sequencer

Figure 10. 31: XADC Configuration 2

• Leave the AXI4STREAM as is

• Remove the tick from reset_in box so that

the XADC will be free running

• Note the Event Mode Trigger is not an
option. This is because the continuous sampling
mode was selected.

Analogue Sim File Option

Leave everything as is in the Analogue Sim File option section.

Chapter 10 | joseph attard

P a g e 13 | 32

The ADC Setup Page

Figure 10. 32: The ADC Setup Page

In the ADC setup page, leave

sequencer mode in continuous

mode so that the XADC will

operate in free running mode.

Opt for averaging 16 and

therefore XADC will sample

and add 16 ADC results and

output their average. This is

very convenient because a low

pass filter is created in

hardware and the designer

does not have to worry about

it.

Leave the ADC calibration as is.

Leave channel for MUX as is.

The Alarms Page

Figure 10. 33: XADC Alarms Page

Remove all the ticks in the

alarms page. For this project

the alarms are not needed.

Chapter 10 | joseph attard

P a g e 14 | 32

The Channel Sequencer Page

Figure 10. 34: XADC Channel Sequencer Page

In the channel sequencer page,

the channels that are to be

sampled must be selected.

Note in the left pane that the

XADC block has reduced in

size due to the changes we

have done

Wiring the XADC

Figure 10. 35: Connecting the XADC Clock

Dclk_in should be connected to the 100 MHz clock because this is the default clock

input for the 1MSPS can be achieved on Vp/Vn analogue inputs.

Figure 10. 36: Extending the DRP Bus

Hover the mouse over s_drp. Notice two
arrows pointing downwards. At that point
left-click the mouse to reveal the DRP
busses as shown in Figure 10.36

Chapter 10 | joseph attard

P a g e 15 | 32

Figure 10. 37: Connecting the Vp/Vn to external pins

Vp/Vn will be connected to their dedicated external pin.

To do this, hover the mouse on Vp/Vn, right-click and

choose make external as shown in Figure 10.37. Do the

same for Vaux8.

Now according to page 73 of UG480, for XADC to operate in continuous mode, one

must do the following connections:

• Connect channel[4:0] to daddr_in[4:0] – daddr_in[6:5] must be connected to

logic 0.

• Connect d_en_in with eoc_out

• Connect drdy_out with dwe_in

For point 1 above, the successful way to do it is to connect them to a VHDL

module and concatenate “00” to bits 6:5 of daddr_in.

channeladdr_out <= "00" & ADCchannel;

where ADCchannel is connected to channel_out of the XADC block.

Figure 10. 38: Wiring the XADC

Figure 10.38 show the rest of the connections of the XADC block.

Chapter 10 | joseph attard

P a g e 16 | 32

Connecting the ADC result bus to the AXI GPIO block

Figure 10. 39: Connecting the ADC result bus to the AXI GPIO Block

Chapter 10 | joseph attard

P a g e 17 | 32

Including the VHDL module in the block design

Now, to include a custom VHDL module, right-click anywhere

on canvas and select add module, the following pop up window

appears:

Figure 10. 40: Adding a VHDL Module to the Block Design

The VHDL modules that have passed the

synthesis test after saving the code will appear

in the list. If there are no modules in the list,

then it means that the VHDL module has an

error and one needs to rectify that error before

the module will be available to be added in the

block design.

Figure 10. 41: Connecting the HDL module to outside peripherals

Hover mouse on the respective pins, right click and then choose “make external”.

Figure 10. 42: Connecting the Channel Address Bus via the VHDL module

Chapter 10 | joseph attard

P a g e 18 | 32

Figure 46: The channel address is input to the VHDL module

The ADCchannel bus is connected to channel_out of the XADC block. This will

make sure that daddr_in[6:5] will be connected to logic 0 and daddr_in[4:0] will be

connected to channel_out and therefore the channel address is still 7 bits wide but

only the first 5 bits are really selecting which channel is being sampled! This is

specified on page 73 of UG480.

Figure 10. 43: ADC result bits shared between AXI GPIO and VHDL module

ADCresult is connected to do_out of XADC. This data will be shared with the PS via

the AXI GPIO.

The architecture of the VHDL module is shown in the code snippet 10.1 below:

Chapter 10 | joseph attard

P a g e 19 | 32

Code Snippet 10. 2: VHDL code

Validating the schematic

Click on the validate schema icon on the tool bar of the canvas

Figure 10. 44: Validate the Block Design

Figure 10. 45: Critical Warning that can be solved

To solve the above warnings, one has to follow the steps in Figure 10.46.

Chapter 10 | joseph attard

P a g e 20 | 32

Figure 10. 46: The Address Editor

• Click on the address editor to

reveal the problematic blocks.

• Highlight one of the blocks,

then right click on it and choose

Assign address

• Do the same for the second

block

• Figure 10.47 shows the

assigned address of the AXI blocks

Figure 10. 47: The AXI GPIO are assigned an address

Create a Hardware Wrapper

Create a hardware wrapper for the block design. This will act like a top-level module.

Figure 10. 48: Creating a Hardware Wrapper

Start synthesis

After the hardware wrapper is created, it is time to run synthesis. Click on Run

Synthesis on the left-hand-side of the IDE and click on OK for the following window.

Chapter 10 | joseph attard

P a g e 21 | 32

Before running implementation, it would be wise to assign the appropriate pin

numbers to all external pins as shown in Figure 10.49.

Figure 10. 49Part of the pin assignments

Since there is not enough IOs to cover both PS and PL, half of them will be allocated

to the PS part through the AXI GPIO and half of them to the PL part.

The single seven segment display is connected to the Programmable Logic part while

the RS232 port will be used to send data to PC to confirm that

PS is reading XADC data.

Note that all the voltages where changed to 3V3 instead of

their default 1V8.

Notice the tick on the pins that were assigned a pinout!

Figure 10. 50: Changing the Operating Voltage to 3V3

Figure 10. 51: Assignment of Seven Segment Pins

Due to the changes made to the external configuration of the design, a new

constraints file has to be created because now it differs from the standard constraints

file included with the board support files. So, Figure 10.51 shows that a new

constraints file will be created that will include the changes made.

Chapter 10 | joseph attard

P a g e 22 | 32

Figure 10. 52: Creating a new constraints file

After saving the new changes in the pinouts, the IDE will ask you to save to the new

constraints file . Just give it a name and then click on OK.

Bitstream failure

Figure 10. 53: Bitstream File Failure

So, the implementation run has passed successfully but

the bitstream failed. Let’s see the errors:

These must be changed to 3V3.

Chapter 10 | joseph attard

P a g e 23 | 32

Figure 10. 54: Error Messages

Now for the second error:

Figure 10. 55: The Second Error

This error was generated because not all external pins were assigned a physical IO

pin. As the message suggests, create a .tcl file and pre-hook it to reduce this error

into a warning.

So, click on File→ new file

Figure 10. 56: Adding a .tcl File

Figure 10. 57: Creating a .tcl File

The TCL file is an option under the new file selection in the File menu. The above

statement in the TCL file was written by the author to reduce the errors into warnings

for those pins who were not assigned any external IO pins.

Make sure that there is space between the braces and the square brackets and a

semicolon at the end!

Now right-click on “generate

Bitstream”

and click on Bitstream settings.

Figure 10. 58: TCL file affecting the bitstream generation

Chapter 10 | joseph attard

P a g e 24 | 32

Figure 10. 59: Pre-Hooking the TCL File

Figure 10. 60: Selecting the new TCL File

Figure 10. 61: confirming the TCL File

Chapter 10 | joseph attard

P a g e 25 | 32

Do not forget to click on Apply! Then OK

Click on generate bitstream again and see what happens.

Figure 10. 62: Successful Generation of the Bitstream File

Now export the project to hardware including the bitstream file.

Exporting the hardware design

Figure 10. 63: Exporting the Hardware

Figure 10. 64: Including the Bitstream File

Now launch SDK from within the Vivado IDE environment. File -> Launch SDK

Chapter 10 | joseph attard

P a g e 26 | 32

Click on OK for the following window.

Now create an FSBL project.

File → new → application project →

Figure 10. 65: Naming the FSBL project

Click on NEXT underneath.

Choose Zynq FSBL from list and then click on FINISH

underneath.

Make sure that you allow SDK to create the work

environment.

Figure 10. 66: Choosing the FSBL Project

Now let’s create a C project

File → new → application project → give a name to the project

Click on NEXT

Chapter 10 | joseph attard

P a g e 27 | 32

This time select hello world from the list and click on

FINISH.

Figure 10. 67: Selecting the C project

The SDK will add the C project to the Vivado project.

Figure 10. 68: Locating the Hello World C program

• Include the AXI GPIO library #include “xgpio.h”

The xgpio library is in libsrc folder under

ps7_cortexa9_0

Figure 10. 69: Locating the xgpio library

AXI GPIO block library for the PS part is shown in Figure 10.69. This is different

from the gpiops Library so watch out!

Chapter 10 | joseph attard

P a g e 28 | 32

Figure 10. 70: The AXI GPIO Library

Initializing the AXI GPIO

In xgpio_sinit.c file copy the lookup().

XGpio_Config *XGpio_LookupConfig(u16 DeviceId)

U16 DeviceId can be found in xgpio_g.c file. There can be only two instances of

AXI GPIO. If the application needs three then one has to see whether there is a

workaround. The above function call is changed to:

AXIgpio1Ptr = XGpio_LookupConfig(XPAR_AXI_GPIO_0_DEVICE_ID);

Then write the function call:

int XGpio_CfgInitialize(XGpio * InstancePtr, XGpio_Config * Config,UINTPTR

EffectiveAddr)

converted to:

AXIgpio1success=XGpio_CfgInitialize(&AXIgpio1,AXIgpio1ConfigPtr,AXIgpio1ConfigP

tr->BaseAddress);

AXIgpio1success is of type int.

Now use the returned variable value to check whether the initialization has been

successful or not.

if(AXIgpio1success != XST_SUCCESS)

 {

 return XST_FAILURE;

 }

Usually if there is a failure here, the program will stop running here.

Repeat the same instructions to AXI GPIO 2.

Chapter 10 | joseph attard

P a g e 29 | 32

Code Snippet 10. 3: Initializing the AXI GPIOs

Now set the direction of each channel in each AXI GPIO block.

void XGpio_SetDataDirection(XGpio *InstancePtr, unsigned Channel, u32

DirectionMask)

The above function is found in xgpio.c file. 0 means that particular bit is an output

while 1 means that particular bit as input.

Code Snippet 10. 4: Port Direction of each AXI GPIO

The channel number can be either channel 1 or channel 2 within each AXI block.

Now read from channel 2 of AXI GPIO 1 to know which ADC channel is giving the

ADC result from channel 1 of AXI GPIO 1 and then output the value in channel 1

of AXI GPIO 2.

u32 XGpio_DiscreteRead(XGpio * InstancePtr, unsigned Channel)

the above function returns a value of type u32.

ADCchannel = (XGpio_DiscreteRead(&AXIgpio1,2) & 0x0000001F);

now to write to a channel in one of the AXI GPIOs use:

void XGpio_DiscreteWrite(XGpio * InstancePtr, unsigned Channel, u32 Data)

Chapter 10 | joseph attard

P a g e 30 | 32

Code Snippet 10. 5: Reading and Writing from AXI GPIO

In the code above, the read function together with bit-masking was used so that if

there are any other 1s which are not of interest will be removed. So, read the channel

number first, then use it as a reference to know which ADC channel is transmitting

data at the output. Send them on UART and at the same time display the result on

LEDs through the AXI GPIOs to access the pins located on the PL side.

Reconfiguring the Board Support Package

Figure 10. 71: Board Support Package

To be able to communicate with PC, UART

1 must be made as the default UART not

UART 0.

Chapter 10 | joseph attard

P a g e 31 | 32

Make sure to wait for the

update to take place

because it takes a few

minutes.

Creating the Boot Image File

The Zynq 7 can only be programmed in two ways, either using

a JTAG cable or via the ARM Cortex A9 by loading a

bootloader file on SD card. The ARM A9 reads the boot image

file from the SD card and loads the PL part of the Zynq SoC.

Right click on the C project and select create boot image.

Figure 10. 72: Creating the Boot image file

Make sure that there are three files in the ISO file. Click on Create boot image

underneath.

Chapter 10 | joseph attard

P a g e 32 | 32

Now look for the generated boot image file in the appropriate folder. Copy and paste

on the SD card.

Figure 10. 73: Locating the BOOT image file in File Explorer within Windows

Chapter 11 | Joseph Attard

Page 1 of 9

Event driven sampling of multiple XADC channels from the Programmable

Logic

The aim of this chapter is to sample XADC channels using event driven technique

from a VHDL module. Using this technique, the programmer has full control of the

XADC block and therefore could determine which ADC channel to sample and when

the ADC result is available.

In previous chapters, the XADC was configured to do continuous sampling and all

that was needed from the designer’s side is to sample the channel address available

at the output of the XADC block and route the ADC data on the do_out bus to the

output port. This is convenient, it is challenge to write an XADC driver that is able

to operate the XADC block in event-driven mode.

During experimentation, it was discovered that at power-on-reset, the XADC needed

some finite time to settle, before the first sample. This should be in the form of

a small delay of 100ms.

End-of-Conversion Signal

In previous code the DRDY signal was being monitored while the EoC signal was not.

This was recommended by UG480 on page 74 section Dynamic Reconfiguration

Port Configuration (DRP). However, taking a closer look at the timing diagram of

the Event-Driven Sampling, one will soon realize that it was imperative to check

EoC signal. By doing so, the XADC was given enough time to finish the previous

conversion and start a new sample. UG480, shows that the XADC needs four clock

cycles between conversions especially if the next conversion is going to be done

from a different channel.

Figure 11. 1: Event Driven Mode Timing Diagram

CONVST signal

From the timing diagram it is clearly seen that two clock cycles are needed for

CONVST signal to be effective. This gives time for the BUSY signal to become logic

1.

• So, check the BUSY signal to be at logic 1 after driving the CONVST signal to

logic low.

• Make sure that the BUSY signal goes low again.

Chapter 11 | Joseph Attard

Page 2 of 9

• Then wait for the EoC signal to go high.

Now read the channel ADC data from the data bus. This is described in the next

section.

Reading ADC data from the data bus

Now to read the ADC result from XADC, one must go through the following steps

according to timing diagram of Figure11.2. This was taken from page 75 of UG480:

Figure 11. 2: DRP Timing Diagram

So, after the EoC is asserted, it is time to read the ADC result by following these

steps:

• Assert the D_en signal to logic 1 for one clock cycle

• The D_we input of the XADC should be hardwired to ground

• Wait for DRDY signal of XADC to go high

• Get the ADC data

Obviously the above must be implemented in a state machine, and therefore one

must make sure to store the ADC result in a register.

Since more than one XADC channel must be read, with my VHDL code, another

state-machine was created to controls which channel the controller will sample. The

following sections show the block diagram and explain the VHDL code.

Chapter 11 | Joseph Attard

Page 3 of 9

The Block Diagram

Figure 11. 3: System Block Diagram

One should go through all the steps described in previous chapters to draw the

circuit as shown in Figure 11.3. The XADC configuration will be explained next.

Figure 11. 4: XADC Basic Configuration Page

After double-clicking the XADC wizard block, the basic page pops up. Enable the

DRP radio button and the Channel Sequencer button as shown in Figure 11.4. Scroll

the horizontal bar to the right to reveal the Timing Mode section as shown in Figure

11.5. Tick the Event Mode radio button. Leave the frequencies as they are.

Chapter 11 | Joseph Attard

Page 4 of 9

Figure 11. 5: Enable the Event Mode

Figure 11. 6: Analog Sim File Options

Leave the Analog Sim File Options section as it is.

Figure 11. 7: Event Mode Settings

Chapter 11 | Joseph Attard

Page 5 of 9

Leave the AXI4STREAM section as it is but make sure to tick the reset in square and

the convst in radio button.

Leave the ADC setup page as it is.

Figure 11. 8: Alarms Setup page

Remove all the ticks in the alarms setup page as shown in Figure 11.8. make sure to

scroll down and disable the remaining alarms.

Figure 11. 9: Selecting the Analogue Channels

In the Channel Sequencer page, select the channels for the application. In this

project, only the external Vp/Vn and Auxiliary channel 8 are selected.

That’s it! Now click on OK to finish the XADC setup. Now its time to reveal the VHDL

code.

Chapter 11 | Joseph Attard

Page 6 of 9

The VHDL driver

Code Snippet 11. 1: Entity Declaration

Code snippet 11.1 shows the entity declaration. This shows all the inputs and the

outputs of the VHDL driver.

Code Snippet 11. 2: Declaring the internal signals

Code snippet 11.2 show all the internal signals used. Note the state machine

declaration.

Code Snippet 11. 3:

The process shown in Code Snippet 11.3 is used to control the master state machine.

As can be seen, it’s clock is the 100 MHz clock.

Chapter 11 | Joseph Attard

Page 7 of 9

Code Snippet 11. 4: Master SM

Code Snippet 11.4 shows the syntax for the master state machine (SM). There are

two handshake lines between the master state machine and the slave state machine.

The slave state machine is the one that is directly interfaced to the XADC block. The

master SM issues a signal (getADCdata signal) to trigger the slave SM, then it waits

for the slave SM to finish (ADCdata_done signal). There is also the channel address

denoted as ADC_reg_addr, that selects which ADC channel should be sampled.

Chapter 11 | Joseph Attard

Page 8 of 9

Code Snippet 11. 5: Event Driven XADC driver

So in the first three states, the SM will first reset the XADC block, then it will go into

a delay of 100 mS. At this point the SM will monitor the DRDY signal, and once this

goes low, the SM will trigger the conversion process. The SM will then wait for the

busy line to go high at which point the start-conversion signal will be reset. The SM

waits for the end-of-conversion signal to go high, at which point, the data enable

signal will be set by the SM for one clock cycle. Then the SM will monitor the DRDY

signal again to go high. After that, the SM will enable the 16-bit ADC data and copies

it from the data bus.

Code Snippet 11. 6: Delay of 100 ms

Chapter 11 | Joseph Attard

Page 9 of 9

As already stated, in this project two ADC channels were employed and therefore

these had to be displayed on different display-media. Code Snippet 11.6 shows the

100 mS delay process and also a statement that assigns the raw 12-bit data to output

LEDs. It must be stressed here the versatility of the FPGA as opposed to a

microcontroller. In a microcontroller, the raw data had to be shifted to the left by 4

places, however with FPGAs, all one has to do is to extract the bits of interest and

assign them to a new register already placed according to their binary weight!

The ADC data is only shown on the LEDs when the address of the Auxiliary channel

8 is available at the output of the XADC block. This is very convenient.

Code Snippet 11. 7: Seven Segment Driver

Code Snippet 11.7 shows a convenient way to convert the voltage of a signal from the

ADC into decimal levels from 0 to 9. However, to use the relational operators in

VHDL, one has to use integer data types. So, a concurrent statement was included

to convert the input ADC data from unsigned to integer. Then the new variable or

register could be used in the when-else statement.

That should wrap everything up, in the next chapter, the same project will be

extended to include the Processing System of the Zynq 7 System-on-Chip.

