Preface

Thanks so much for Mr. Joseph Attard for writing this amazing tutorial book for the Z-turn Board.
Joseph is a Senior lecturer Il working at Malta College for Arts Science and Technology on the
island of Malta. He became an electronics enthusiast since a very early stage which culminated in
a BEng Hons degree in Electronic Systems from Portsmouth University UK (2010) and a Master
degree in MicroElectronic and MicroSystems from the University of Malta (2016). He has gained
great experience from building various embedded systems using both PIC microcontrollers and
Xilinx FPGAs. He makes sure to keep up with technology and always finds time to learn new
microprocessor/FPGA systems. His passion led him to Xilinx Zynq 7 System-on-Chip (SoC), and
after an extensive research on available Computer-on-Module Boards, he settled for MYIR’s
Z-turn Board which is one of the best cost per available-peripheral Computer-on-Module boards,

available on the market. Joseph’s email address is pic18f4455@yahoo.com

In this book, Joseph shared a lot of content on how to work with the Z-turn board, starting from
simply creating a project in Vivado to flash an LED, continuing to Detecting Switch inputs, all the
way to interfacing the Zynq 7 System on Chip to multiple analogue sensors through multiple
XADC channels. All the above-mentioned interfacing is done from both the ARM Cortex A9,
commonly known as the Processing System and the Artix 7 FPGA, commonly known as

Programmable Logic, both residing within the Zynq 7 SoC.

Being a lecturer, Joseph did not simply show the steps of how to achieve the goals one is set to
achieve when using the Z-turn Board, but also pointed out hidden procedures, one has to
undergo, while implementing these steps. He makes sure to explain the reasons why, one has to
go through the required hidden procedures, and this added material, makes it really helpful for

beginners and established engineers alike, to quickly get used to the Z-turn board.

This book includes a lot of C code and VHDL code written by the author himself. This is
accompanied by lots of comments and explanations from where the C functions are derived in
SDK which for the novice engineer would be quite difficult to understand. All VHDL code is
originally written by the author and one has to have a good understanding of how VHDL works to
obtain the full benefit of this book.

The Z-turn board is one of the best off-the-shelf Computer on Module Boards available in the
market today. It has a vast array of peripherals ranging from very high-speed interface connectors,
HDMI, USB etc. It is advisable by the author to invest a little bit more in MYIR’s Z-turn Cape 10
board which could be connected directly underneath the Z-turn board. This Cape 10 board offers
better 10 capabilities for those users who would like to interface the Z-turn Board to external

peripherals such as LEDs, switches, motors, sensors, etc.

Given the vast amount of peripherals present on the Z-turn board and the amount of computer

http://www.myirtech.com/list.asp?id=502
http://www.myirtech.com/list.asp?id=532
http://www.myirtech.com/list.asp?id=532

power present on the Zynqg 7, one cannot ignore the potential one can achieve, in areas such as
Machine Learning, Machine Vision and Al. By writing this book, Mr. Joseph Attard and MYIR are
hoping to make the Z-turn board, the preferred choice for both novice engineers and experienced

engineers alike, in their endeavor to learn how to work with Xilinx Zyng 7 SoC.

This work will not stop here and MYIR encourage more and more players to join in sharing

knowledge with the general public for a better future.

Catalogue

Chapter 1........ Creating a Project for the Z_turn ONLY for the FPGA part of the Zynq 7

Chapter 2........ Steps to create an A9 Hard Core project using both Vivado and SDK

Chapter 3........ Flashing LEDs from both Processing System and Programmable Logic
Chapter4........ Detecting Switch Inputs from Programmable Logic

Chapter5........ Using the DIP switches with the Processing System

Chapter6........ Interfacing with the Button Switch on the Z-turn board

Chapter 7........ Processing System Dual AXI block control

Chapter 8........ Information on XADC

chapter9........ Sampling External ADC from the Processing System

Chapter 10........ Multiple Analogue Sensing using XADC - Data is common to both PS and PL V2

Chapter 11........ Event driven sampling of multiple XADC channels from the Programmable Logic

Chapter 1 | Joseph Attard

Getting Started

The first point of reference to start working with the Z-turn board is a Youtube video that shows the
link from where to download the board-support-files and how to install them correctly. This is given
below:

https://www.youtube.com/watch?v=VDYoweTZtfU

This video will introduce the Github link below, from where to download the board-support-files.

https://github.com/qg3k/zturn-stuff

Then the Github site will take you to the following wiki page:

https://reference.digilentinc.com/reference/software/vivado/board-files?redirect=1

The above is the wiki page that shows how to install the board files for Vivado. The following sections
show how to install the board support files for Vivado.

Installing the Board-Support-Files

The board files are used by Vivado. These consist of XML files used by Vivado to recognize various
development boards. The board files were downloaded from Github link stated above.

The board file folder must be copied to the location shown by figure 1 below:

- wualru_ines

lorge Share lew
It\ » This PC » Local Disk (C:) » Xilinx * Vivado » 20174 > data > boards *» board_files

Name Date modified
access

ac/01 02/02/2018 16:42

Figure 1: Location where to copy the Board support Files

Figure 2 below shows the copied folder in the board_files directory within the Xilinx Directory. The
folder must be copied as is! That is, do not remove or add any files to the copied folder!

vcul525 02/02/2018 16:42 File folder
xm105 02/02/2018 16:49 File folder
zc702 02/02/2018 16:43 File folder
zc706 02/02/2018 16:48 File folder
zcu102 02/02/2018 16:50 File folder
zed 02/02/2018 16:43 File folder
zturn-7z020 05/02/2018 19:53 File folder

Figure 2: Z-turn folder seen with the other board support files within Xilinx Directory

Page 1 of 25

https://www.youtube.com/watch?v=VDYoweTZtfU
https://github.com/q3k/zturn-stuff
https://reference.digilentinc.com/reference/software/vivado/board-files?redirect=1

Chapter 1 | Joseph Attard

there are two folders

GitHub_?_tumnBoard_stuff » murn-stuff-master * riwm-stuff-master » boards » board files » ztun-Tz020 » 2 W L

you should save them as

board they are
partl_pins) 2018 19:¢ XML

preset 022018 19:21 XML

Figure 3: Github folder contents

Figure 3 above shows the contents of one of the folders downloaded from Github. It is advisable to
copy both folders into the Xilinx directory as they are in the folder indicated by figure 2.

The following section shows how to create a project for the Z-turn board in Vivado. The project will
only include a simple VHDL module, therefore only the Programmable Logic part of the Zynqg 7
System-on-Chip will be used. The following sections show the full procedure, right up to programming
the Zynq 7.

How to create a project in Vivado

VIVADO!

HLx Editions

icl Recent Projects
Quick Start profec 2
Create Project pfOJgG_1

Open Project

< led
Open Example Project

Figure 4: Start page in Vivado

Figure 4 above is self-explanatory, all the user has to do is to left click on Create Project link.

A window pops up, click next

2 Cance

Figure 5: Pop Up Window 1

For the first pop-up window, click on Next.

Page 2 of 25

Chapter 1 | Joseph Attard

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. ‘

Projectname; |LightingLED1| <:_| name the project here |
— either browse to the folder where you D
want the project to be stored or write

+ Create project subdirectory the name of the project here

Project Jocation: GJ/Z-TURN_V12_20171030/Zynq7020/LightingLED1

\ect will be created at GJ/Z-TURN_V12_20171030/Zynq703 ghtingLED1/LightingLED1

name of the folder
leave this ticked

Figure 6: Name the Project Window

Figure 6 shows where to write the name of the new project, and what one needs to do, to store in the
desired location within the PC.

Click on NEXT again.

Project Type
Specify the type of project to create. ‘

o RTLProject
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time leave this radio button on

_Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation.

Figure 7: Project Type Window

Since in this project, a VHDL module is going to be created, then one should leave the window shown
in Figure 7 as is. Click on NEXT again.

¢ New Project

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new
source file on disk and add it to your project. You can also add and create sources later.

click the ADD button here
+

Fl
Add Files...
Add Directories..

Create File... <j select "create file"

Figure 8: Adding the VHDL source file

Page 3 of 25

Chapter 1 | Joseph Attard

In the next window, shown by Figure 8 in the previous page, the user will be asked whether any source
files shall be created and/or included in the project. So, one must first click on the plus (+) sign in the
left corner and then select create file from the drop-down list.

This will lead to another pop-pup window which asks for the name of the module and whether VHDL
or Verilog will be used as the preferred language for the module created. Since the author only knows
how to program in VHDL, then the file type is going to be VHDL. The file should be given a name that
is related to the function of the module. In this case, since the VHDL module is going to light an LED,
the name implies the module’s function! All this is shown in figure 9 below:

¢ Create Source File »% | A new window pops up
asking you to give a name

Create a new source file and add it to your to the source file

project.

Eile type: @ VHDL v <::| select the type of file

File name: |lightingLED1 |<::| name the file

<b leave it as is. This will
store the file in the same

['_’ “] folder as the project
PN
I

File location: | &5 <Local to Project=

click OK
Figure 9: Give a name to the VHDL module

Figure 10 below shows the new VHDL module is part of the project. One could add as many modules
as needed. This could become handy if a top-down approach is used to build the system.

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new
source file on disk and add it to your project. You can also add and create sources later.

& continue adding files from here
+

F
Index Name Library HDL Source For Location
wh 1 lightingLED1vhd xil_defaultlib = Synthesis & Simulation ~ <Local to Project=

the names of the files that will be part of this project will be listed here

or continue adding files from here otherwise click NEXT

<

’ Add Files H Add Directories H Create File

Figure 10: Add source files to the project

Page 4 of 25

Chapter 1 | Joseph Attard

this is the same pop up window as the one above. It is important that you decide which
language you are going to use

Targetlanguage: VHDL

W

¢ New Project

Simulator language: VHDL v @click NEXT

=l

Figure 11: Choosing the language used in the source file

Add Constraints (optional)
Specify or create constraint files for physical and timing constraints.

the next pop up window

asks you if you are going

to add any constraints '
files.

-

4

For now click on NEXT
below

No constraints files added at this time!!

Figure 12: Constraints File

Vivado will then ask whether a constraints file should be added. Since the board support files have
been included, one does not need to include a constraints file at this stage, so click NEXT for this
window, without doing any changes.

Select {8f Parts | [l Boards <j

© Filter G

Product category. All

Eamily: All
Package: All
Search:
Part

) xc72015¢clg485-2
& xc7z015clg485-1
&} xc72015iclg485-1L
& xc7z020clg400-3
&} xc72020clg400-2

| @ xc72020¢ig400-1
& xc72020clg484-3

1/O Pin
Count
485

485
485
400
400

| 400

484

h automaticallv
Available LUT FlipFlops Block Ultra DSPs Gb _ GTPE2
10Bs Elements RAMs RAMs Transceivers Transc
150 46200 92400 95 0 160 4 4 ~
150 46200 92400 95 0 160 4 4
150 46200 92400 95 0 160 4 4
125 53200 106400 140 0O 220 0 0
125 53200 106400 140 0O 220 o |selected the part
125 53200 106400 140 O 220 0 0 <j
200 53200 106400 140 0 220 0 0

v Speed grade: All v

in this pop-up window, you can either select the part or even
better if your vendor has adopted an XML file for the board,
you can use it instead.

v Temp grade: All v

If the board is selected

then the constraints file

will be generated

v

Figure 13: Choosing the Zynq 7 SoC according to part number

In the next pop-up window, one can either choose the Zynq 7 according to the part number resident
on the development board, or even better one can choose the board itself by first clicking on the

Page 5 of 25

Chapter 1 | Joseph Attard

boards tab and then choose the Z-turn board from the list. This is only possible if the Board Support
files of the relative board are included in the Xilinx folder as described earlier in this chapter.

Select {8 Parts | |l Boards <: 1) click on boards

~ Filter/ Preview

Vendor: All v
Display Name: @ All v
Board Rev: Latest e

you need to install the XML files for your board

Search:
first for this to be available. | have covered this

Display Name in another document Vendor BoardRev Part
@ Kintex-Ultrascale Alphadata board alpha-datacom 1.0 & xcku060-fva1156-2-e
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d (&} xc7z020clg484-1

| @ ztum Board (Mys-72020-C) &, —] select your boargir.com 4 @ xc72020c1g400-1

e |
@ Arix-7 AC701 Fvaluation Platform xiling com 11 & xn7a200fhnR7R-2 bt
< >
Figure 14: Selecting the Z-turn Board from the list
Click on NEXT.

VIVADO ’ New Project Summary

HLx Editions
© A new RTL project named 'UART_LED’ will be created

No source files or directories will be added. Use Add Sources to add them later
No constraints files will be added. Use Add Sources to add them later.

o The default part and product family for the new project
Default Board: Z-turn Board (MYS-7Z020-C)
Default Part: xc7z020clg400-1
Product: Zyng-7000
Family: Zynq-7000
Package: clg400
Speed Grade: -1

-
i‘ Xl LI NX To create the project, click Finish G

Figure 15: Project Summary

Figure 15 is the last window that pops up while setting up the project. It contains a summary of all
the previous settings done. All that needs to be done is to click on FINISH.

Once FINISH is pressed, a new window pops up. In the new window, one can enter the inputs and
outputs of the VHDL module that was created before.

Page 6 of 25

Chapter 1 | Joseph Attard

¢ Define Module X

Define a module and specify /O Ports to add to your source file.

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked. ‘
Ports with blank names will not be written.

then this window pops-up to define the pinouts of the entity just like XISE
Module Definition
Entity name: lightingLED1

Architecture name: Behavioral

/O Port Definitions

+ -

PortName Direcion Bus MSB LSB
LED

: om: v , click on NEXT
(2) give the pinouts a name, direction and state

whether they are a bus or just a single output or
input

Figure 16: Define the inputs and outputs of the VHDL module

Now, at this point, one might not know exactly how many inputs and outputs, the module might end
up with, however if one has any idea of any common inputs and outputs that the module might
have(such as the clock and the reset inputs), one could include them immediately in the table shown
in figure 16 above. However, if currently, the user does not have any idea what the names of the
inputs/outputs are going to be, it is perfectly safe to just click on the OK button and continue with the
next pop-up window without submitting any names.

Vivado opens and one can find the source files as shown in Figure 17 below.

= > B O X
4 4
low Navigator C B AN PROJECT MANAGER - LightingLED1
7 PROJECT MANAGER - all the source files reside
Sources ? Oo0 X Project Summary
£ Settings here
Q = & + o
Add Sources Settings Edit
L T ot v Design Sources (1 -
anguage Templates .
@2 lightingLED (Behaviora Thtinal Eé Project name: LightingLED1
&P Catalog ddublé‘t’ﬂfk"&h*tl_‘le'nar]"le'qf;ﬂ]_e'source-fiie-to-opeﬁit Project location: G:Z-TURN_V1z
Hierarchy = Libraries Compile Order Product family: Zyng-7000
v |IP INTEGRATOR Project part: xc7z020clg400-
Create Block Design R R Top module name: lightingLED
. S — .

Figure 17: Location of the Source Files

Double clicking on the VHDL source file so that one can write the VHDL code that eventually will be
translated into hardware later by Vivado.

Page 7 of 25

Chapter 1 | Joseph Attard

pu L L ” £ UBIdUIL Ldyuul

PROJECT MANAGER - LightingLED1

Sources O > Project Su y « lightingLED1.vhd
Q = s + & 20171030/2ynq7020/LightingLED1/LightingLED1/LightingLED 1.srcs/sources_1/newllightingLED1 i
~ = Design Sources a Q X BB /N E Q
iz lightingLED1(Behavioral) (lightingLED1.vhd) . the source file
Annteniote < N e ___appears here.
Hierarchy Libraries Compile Order) o)) o o . f

any Xilinx leaf cells in this code. Scroll down and

3 --library UNISI write the
Source File Properties ? OO X - e architecture

@ lightingLED1.vhd o3 34 entity lightingLED1 is
Port (LED : out STD LOGIC):

General Properties <

Figure 18: Typical VHDL source file

Figure 18 and Figure 19 show the same VHDL file and code. In this project, an LED will be lit. It is a
simple instruction, however at this point, the objective of this chapter is to show all the steps needed
to develop a Zynq 7 project that will operate only the Programmable Logic part.

Sources = I ¥ S y « LEDonOff.vhd *
Q = @& -+ o TURN_V12_20171030Zynq7020/ EDonOMLEDonOFFAEDONOFF. st
|
Design Sources ~
Q W = X =B B / E C
“ & LEDonOff(Behaworal) (LEDonOff vhad) .
Hierarchy L f noer a Save File (Ctr1+S) avioral of LEDonOff is

Source File Properties

“ LEDonOfvhd =3

General

Figure 19: Simple VHDL instruction

Once the VHDL code is written, the code must be saved from the icon shown in Figure 19. By saving
the file, Vivado is also checking the syntax and if there is any syntax error, Vivado will pop up a window.

Creating a Block Design

The next step is to create a Block Design. This approach is the easiest approach one should take when
developing a project for the Zynqg 7 System-on-Chip especially because the board support files of the
Z-turn board are already included in Vivado. That way, Vivado would know the features and
parameters of the Z-turn board and would give warnings or error messages if one would try to use
hardware that is outside the hardware settings of the Z-turn board. Figure 20 on the next page, shows
the steps one has to go through to create a block design. Once the block design has been created, a
new file-type will be generated by Vivado where a schematic representation of the hardware could
be drawn. This replaced the canvas in Xilinx ISE. The next step is to include the processing system as
shown in figure 21 on the next page.

Page 8 of 25

£+ Settings

Chapter 1 | Joseph Attard

Qe+ hd
Add Sources Settings Edit
L Termplat Design Sources c Block Desi «
anguage lemplates ’ reate Blocl esign
> Constraints | 9 harlkse
F IP Catalo Hi h Libraries Compil Gi/Z-TURN_)
s 9 rerarcly foran mps Please specify name of block design ‘ -
3 a Zyng-7000
) 2) give your block design a name -
~ P INTEGRATOR Properties Z-turn Board
1) click on "create block
Not defined
L |, Design name |blociddes|gn <: |
design N VHDL
ele & Directory: @ <Local to Project> v VHDI
Specify source set Desﬁ:urces v
~ SIMULATION ; : _ .
Run Simulation - - -
Name Constraints Swaws WINS T TINS T WRS TS Trws Tuarrower Failed F

Figure 20: Creating a Block Design

Why do we have to include the Zynq Processing System in our Design?

The reason for including a Zynq Processing System in our design is because it is the only way how one
can download the VHDL code to create hardware in the Programmable Logic part! This means that
when the boot-image file is created later in SDK, this will be fetched by the Processing System of the
SoC and after reading it, the hardware part will be configured in the Programmable Logic. So even
though in this example, only the Programmable Logic part is going to be active, the Processing System
part must also be included in the hardware design! Another reason for including the Zynq Processing
System in the hardware design is because the 100 MHz clock required by the sequential circuits within
the Programmable Logic part can only be provided by the Zynq Processing Part! Figure 21 shows the
three steps needed to create a Zynqg Processing System. There are two ways how to add the Zynq

Processing System both shown in Figure 21.

Diagram
bl R + = C

3) write Zynq here G 1) click on the +sign

O

Search: zynq|

% ZYNQT Processing System
4) Zynq 7 processing
system is shown.
5) double click on it

(1 match) <j 2) this window pops up

Diagram

S X0 + & C

click on add IP &
t +

Add IP

Figure 21: Including the Processing System

Diagram
Q Q & X Q + B C 9

Automation C: click here

processing_system7_0

F Designer Assistance avallable. Run Bloc

ooR + |||
FIXED_IO + |||
M_AXI_GPO [}
FCLK_CLKD b=
FCLK_RESETO_N o

- M_AXI_GPO_ACLK ZYNQ‘

Figure 22: Zynq Processing System on Canvas

Now that the Zynq processing system is
included in the schematic, it would be a good
idea to click on Run Block Automation as
shown in Figure 22. This will enable the board
settings as provided by Github and therefore

Page 9 of 25

Chapter 1 | Joseph Attard

establish the peripherals that are already connected on the Z-turn board. Figure 23 below shows a
pop-up window that asks the user to confirm the pre-set board settings.

Q - -
r~ -

v o/} Al Automation (1 out of 1 selected) This option sets the board preset on the Processing System. All current properties will be
7 % processing_system7_0 overwritten by the board preset. This action cannot be undone. Zynq7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces

Description

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration

Instance: /processing_system7_0 leave this window asis

Options
Make Interface External: FIXED_IO, DDR
Apply Board Preset v
Cross Trigger In Disable -

. click OK
Cross Trigger Out Disable v

Figure 23: Preset Z-turn Board Settings

Just click OK on this window and leave everything as is.

vl

Diagram X HWwrapper_ex3wvhd X | pinouts.xdc X | Address Editor
Q@ axyoaq + g C Y o '
. woay . s
[ll+ s_Ax1_Hpo_FiFo_CTRL M”;;;' (:Po 1 I w0 Q + B C 4« O |
il 8_AXI_HPO - i ,
gt PO ACLK ZYNO TTCO_WAVEO_OUT - g —1

TTCO_WAVE1_OUT
C0_WAVE2_OUT

il

S_AX|_F~
Connect from 'FCLK_CLKO" port fo,

'M_AXI_GPO_ACLK' port FC B 100 0 5w o
FCLK_CLK1 L/ AN .
po A MO ‘“ A
FCLK_RESETO_N | S R ’ r
) e = 1) connect anyone
ZYNQT7 Processing System - : “‘.k - z
< v mss a | of the clocks with
now connect the clock to — the AXI clock inputs

the AXlinputs

Figure 24: Expanded Zynq Processing System Block Diagram

Figure 24 shows the expanded version of the Zynqg Processing block after the Run Block Automation
has been enabled. Not to generate any errors, the next step is to connect the FCLK_CLKO which is the
main 100 MHz clock output of the Zynq Processing System, to the AXI inputs at the left of the
Processing System block.

Next include the VHDL module written previously. This is done by right clicking on the canvas or Block
Design window, select Add Module from the list. A new window pops up with the suggested VHDL

Page 10 of 25

Chapter 1 | Joseph Attard

Diagram FlashingLED_attempt1.vhd flashingl ED5.vhd 2 ¢ modules highlighted. Double click
om0 + ® C on the module and it will be added
in block form in the schematic
1: write click on the canvas diagram.
Source File Properties ..
e == button to add IF
+ AddIP.. ? I
Add Module... <:| 2: Select "Add Module"
gLEDattemg IP Settings.. ittemptl.srcs/sources_l/new/Flashingl

Datzemptl/| & validate Design

Craata Hiararrhy

Figure 25: Adding a VHDL module to the schematic

¢ Add Module

Select a module to add to the block design.

Module type: RTL v

Search:

#i FlashingLED_attempt1 (FlashingLED_attempt1.vhd)

G this window pops up

click on the vhdl module
you have created

:mptl.srcs/sources_l/new/FlashingLED

X Figure 26: Selecting the VHDL module

Figure 26 shows the VHDL module that can be
converted into block diagram to be added to the
schematic diagram o f the project. It must be noted
here that if more than one VHDL modules have been
written and are part of the project, all of these
modules will be listed in the lower part of this
window. One can select which one of the modules
could be included in the schematic.

Diagram HWwrapper_ex3.vhd pinouts.xdc Address Editor o
= " -
Q Q I & Q + & C o TF
pocassEng_systamT O
+ |l = con
+ |l > FoiE0 0
Hidwragper ex3 0 X +Il
S il+ +
‘ RTL: }- 1 N d
- ZYNQ s

IYMOTP Y

Now you can actually DRAG the .VHD file from the source window
into the canvas and the VHDL hardware block is created

Figure 27: VHDL module in schematic

Page 11 of 25

Chapter 1 | Joseph Attard

Figure 27 shows the VHDL module is part of the schematic. Since in this particular project, an LED is
only to be lit first and then code could be changed for the same LED to flash instead of just having the
LED lit steadily, there is no need for a clock input to the VHDL block - it is going to be free-running!
That is, it has nothing to do with the PS part of the SoC!

Creating a Hardware Wrapper

After deciding on which VHDL modules are going to form part of the system, the next step is to create
a hardware-wrapper. This is another technical name for the top-level module of a system where it
will include all the components of the system. Failing to do the steps in Figure 28 will result in an
incomplete system and therefore will not work in practice!

ETTRRRY > = & o
W“"”‘"’*“Z)gotom« P coeae ot oseer | 4) choose this
Q Semegs

AS3 Souces

VW IR aton Template
Genprats Outpus Products]
Language Temglates Reset Outpt Products

T wCasog 3) right click on th

Crwate B0ck Design Remove File bom Propect

Opén Bock Desgn

~ f \ kiatie Fie
Genscate Bocx Desin Ousadie

Hacachy Uocate

Figure 28: Creating a Hardware Wrapper

Once the hardware wrapper is created, it is time to synthesize the design. Figure 29 shows how to
synthesize the design by clicking once on run Synthesis.

v SIMULATION Source File Properties

Run Simulation #h lightingLED1.vhd

General Properties
v RTL ANALYSIS

> Open Elaborated Design T'cl Console Message
after writing your code Q

v sligk;ons"Run Svnthesis"

Name Const
» Run Synthesis <: v > synth_1 constr

> Open Synthesized Design impl_1 constr

- .
. -

Figure 29: Synthesize the code

Page 12 of 25

¢ launch Runs

Launch the selected synthesis or implementation runs.

Launch directory: | @3 <Default Launch Directory=

Options
® Launch runs on local host: Number of jobs:

Generate scripts only

4 v

this window pops-up,
Don't show this dialog again click on OK

" [[

Figure 30: Launching Synthesis

Source File Properties ?2 00 X o
@ lightingLED1.vhd &
General Properties
Tcl Console Messages Log Reports Design Runs
Q = £ &%
Name Constraints ~ Status WNS | TNS
v L synth_1 constrs_1 Running synth_design...
impl_1 constrs_1 Mot started
Figure 31: Design Runs
Synthesis Completed X X B

o Synthesis successfully completed.

Next

(®) Run Implementation

View Reports yet!

Don't show this dialog again

_uesign vumpiete:

Figure 32: Synthesis Ready window

Chapter 1 | Joseph Attard

The window of Figure 30 pops up, Click
on OK because it is better to let the
default settings as they are.

Leave the synthesis to complete. Figure
31 show the design runs.

LED <= '1";
end Behavioral;

<

click on the "Design Runs" tab and notice the
synthesis heing done

WHS THS TPWS Total Power FailedRoutes LUT

o /7 8

Once Synthesis is done,

¢ Behavioral of lightingl even thOUgh Vivado

After synthesis is carried out,

Page 13 of 25

suggests to Run
Implementation, it is a
good idea to Open

| _ this wmdov:\;agops-up. do not Synthesized Design
|:> Open Synthesized Desian "run the Implementation just because at this point, it

would be a good idea to

clicl on the radio button next to assign the external pins to

the inputs and outputs.

o
TPWS Total Power Failed

Chapter 1 | Joseph Attard

Assigning Pin numbers to the System

QI E|®|=- b
v Internal VREF
0.6V v

Drop I/0 banks on voltages or the "NONE" folder to set/unset Internal

VREF v
/O Port Properties X k Regions T — e
<J LEDout[2] e o
General Properties Configure Power
oD B19 :
3 IO Ports 820 —
Q /s |4Gl+ M c20 select a voltage
D18
Name Direction Board PartPin Board Part Interface Neg Diff Pair D19 Pin Fixed Bank 1/0 Std
> S The 10 planner is not the default view of 020
v 4 LEDout out h =R anr\er :(S.InOtt . a:twew ° 2 gy L G default (LVCMOS18) ~
ﬁ 4 LEDout2] OUT the constraints i e SO you need to use | I default (LVCMOS18) ~
< LEDout{1] OUT the menu to start it default (LVCMOS18) ~

. . v
assign the pinouts
v

default (LVCMOS18) ~
here SR (EVEMOD 6

1 <J LEDout[0] OUT

Figure 33: Assigning Pin numbers

Figure 33 illustrates one way to assign pin numbers to the inputs/outputs of the system. Since in this
system, there are only three LEDs used, only these LEDs must be connected. After opening the
Synthesized model, click on the I/O Ports tab and adjust the pin numbers according to the Z-turn board
circuit diagram.

Name Direction Board PartPin Board Part Interfface Neg Diff Pair Package Pin Fixed Bank /O Std
v 4@ LEDout (2 ourt o 34 LVCMOS33*
<d LEDout[2] OUT Y16 v v 34 LVCMOS33*
<4 LEDout[1] OUT Y17 v v 34 LVCMOS33*
</ LEDoutf0] OUT R14 v v 34 | LVCMOS33*
Scalar ports

Figure 34: Assiging Voltage Levels to pins

Figure 34 shows how to assign voltage levels to pins. These must be LVCMOS33 not to generate any
errors meaning that the outputs are capable of outputting 3V3. Also, the square boxes under Fixed
column must be ticked not to generate any misleading errors!

Now save the new constraints file as shown in Figure 35.

- - B ® b ¥ ¥ U O & X

4

HI:!::!I:”:H Save Constraints (Ctrl+S) ! SYNTHESIZED DESIGN * - xc72020clg400-1 (active)

v PROJECT MANAGER %
Sources Netlist Device Constraints

Q a o~
o~ w

v Internal VREF

£+ Settings
Add Sources
Language Templates
LF IP Catalog L

Figure 35: Saving the new constraints file

Page 14 of 25

Chapter 1 | Joseph Attard

A pop-up window just like the one shown in Figure 36 shows up. Click on OK.

Out of Date Design X

o Saving the current constraints to the target project constraints file may cause your
synthesis to go out-of-date. To avoid re-running synthesis, you can force the design
up-to-date by selecting the run in the Design Runs tab, right clicking, and selecting
‘Force Up-to-Date’.
click OK for this window

|:| Don't show this dialog again

Figure 36: New Constraints File Warning Window

A Save Constraints « This means that since the constraints have been
changed, a new constraints file will be generated - all
Select a target file to write new unsaved constraints to

EhoDmE0 w1 AN e W Lo ik e 40 e wom] there is to do is to give it a name - Vivado will take care
tl:ns window po?s-up.. of the rest.

give the constraints file a nan

t fil in the same directo . . X .

EmE shen e 2 Figure 38 shows the new constraints file name is

Bleype: | B xDC pinouts.XDC and it is now part of the source file list.

D
File name I I <:
Filg location: = &> <Local to Project> v @

<select a target file>

0 after click OK

® Cancel |

Figure 37: Naming the new constraints file

SYNTHESIZED DESIGN - xc7z020c1g400-1 (active)

Sources ’ In the sources window = ~

Q = € <+ you can see the O
- - constraints file created -~

w Constraints

T
iy pinouts.xdc (target y
Hi T ——— N ————

Figure 38: The New constraints file forming part of the source files

Page 15 of 25

Chapter 1 | Joseph Attard

SYNTHESIZED DESIGN - xc72020clg400-1 (active)

Sources Netlist 2 _D0On Device lightingLED1.vhd X | Schematic pinouts.xdc
= = H ¥ Sule! ighting ighting ighting .srcs/const
Q + ouble click on the name & /12_20171030/Zynq7020/LightingL ED1/LightingL ED1/LightingL ED1.srcs/const
v & Constraints (1 of the constraints file to 2 Q X B ® N E O
» nstrs 111 Show the svntex used
constrs_ set property PACKAGE PIN Y16 [get ports LED]
Y pinouts.xdc (target) v set_property IOSTANDARD LVCMOS33 [get ports LED]
Hierarchy Libraries Compile Order G
Source File Properties ? 00X
% pinouts.xdc - &

Figure 39: Generated Syntax for new constraints file

Figure 39 above shows the new way how to initialize the pinouts in Vivado. This is very different from
Xilinx XISE code, so it is advisable to let Vivado do all the work!

_i > LUK

Note the new
FlashingLED attempt1 0
’ name

A
RTL: =—— LEDout 0[2:0]

Figure 40: Naming the pins

Note in Figure 40 above the _0 naming convention. This is due to creating a hardware wrapper which
is necessary for the bitstream to be generated correctly. So this indicates that the hardware wrapper
has been created correctly and now one can proceed to generating the bitstream file.

However, to generate the bitstream file one has to re-synthesize again. However, this time, instead of
running synthesis, one can run implementation as shown in Figure 40.

Figure 40 also shows that the old synthesis files are all out-dated and that new ones have to be re-
generated due to the changes done in the constraints file.

MEPUIL LIULR INCIWUIRD — L ' DCL PIUPCILY CAULAMUOL CLN 11U [YSL

L] s i of- Fa [
Report Clock Interaction Pl synthesis is Out-of-date X
Hierarchy L
Report Methodology
Synthesis is out-of-date. OK to launch synthesis first? Implementation will automatically
Report DRC Source File Proj start when synthesis completes
Scroll d e\@}l(;lnmlgellun the) pinouts xd
v 8 pinouts.xdc is di i
Implementatlon" and D Don't show this dialog again
. ort Utilization
click on i¥’ .
% Report Power General Pro Yes ‘ No l ‘ Cancel l
"4 Schematic
Tcl Console Messages Log Reports Design Runs Find Results
v IMF'LEMENTATIONG Q =X
P Run Implementation Name Direction Interfface Neg Diff Pair Package Pin Fixed Bank /O Std
W LED OUT Y16 v v 34 LVCMOS33*

Figure 41: Launching synthesis again

Page 16 of 25

¢ Launch Runs
Launch the selected synthesis or implementation runs.
Launch directory: @ <Default Launch Directory> hd
Options

@& Launch runs on local host: Number of jobs: 4 hd

Generate scripts only

Don't show this dialog again

1

Figure 42: re-launching synthesis again

Chapter 1 | Joseph Attard

= click on OK again.

Tcl Console Messages Log Reports Design Runs x Find Results
Qlx|e + %
Name Constraints Status WNS TNS WHS THS TPWS TotalPo
v) synth_1 constrs_1 Running synth_design.. Note
impl_1 constrs_1 Queued...
I's
- o T T In these snapshots one can
Q| | @ + % see Vivado going through the
Name Constraints Status WNS synthesis st'age and a.Iso
< svth 1 s 1 ih desion C etel through the implementation
Syni_ constrs_ Synh_cesion —ompete stage. Once these are done
C impl_1 constrs_1 Running Design Initialization... without any errors, the

now implementation is running

Figure 43: running through the synthesis and implementation stages

Page 17 of 25

window of figure 43 pops up.

Chapter 1 | Joseph Attard

Once the window of Figure 43 pops up,
choose the Generate Bitstream radio
¥ [button and then click on OK to generate
aciace 1 @ bitstream file.
{OSTANDART
when this window
@ Open Implemented Design pops-up, click to

I::> Generate Bitstream generate bit stream

Implementation Completed X £2UILightin(

o Implementation successfully completed.

D Next

pile

View Reports

Don't show this dialo@n then OK

— N (- —

' ~

Figure 44: Implementation ready

Bitstream Generation Completed X Wait for the bitstream file to be generated and once
successful, do not open the Implemented Design but
o Bitstream Generation successfully completed. click on OK.

Next
(®) Open Implemented Design
‘ Figure 45: Bitstream file ready
View Reports
Open Hardware Manager

Generate Memory Configuration File

click on OK
Don't show this dialog again G

Export Hardware

Once the bitstream file is generated, the next step is to export the hardware. This is done by making
sure that Vivado is in the dashboard, that is, there are no files opened. Click on File, then scroll down
to Export, select Export Hardware from the list. This is shown below.

ime

Add Sources... Export Hardware... <: 2

Open Source File... Export Block Design...

Export Bitstream File...

Export

<: Export Simulation... I‘
Launch SOK -m

Figure 46: Export Hardware

=Y

Page 18 of 25

Chapter 1 | Joseph Attard

tions -
¢ Export Hardware X
png_systam7_(
Export hardware platform for software
development tools. é
make sure you tick the include bitstream
opertlesl > Include bitstream ZYNQ‘
leave as is -

Exportto: | & <Local to Projedb<: v
click OK O

Fan Focessing Syst

Options Log Reports 1)

Jé] Exiting

Figure 47: Include the Bitstream file
Make sure to include the bitstream file by ticking the square box before hitting OK below!
Launch SDK

The next step is to Launch SDK from within the project itself. This is done by once again, clicking on
File, scrolling down to Launch SDK and click on it. It must be mentioned here that if one is using a 13”
laptop or a small screen, it can happen that Launch SDK will not be immediately visible. If this
happens, all that must be done is scroll down to the last option on the File-List and then use the arrow-
down key to reveal the Launch SDK option.

ime
W impl_1
Out-of-Context |

Add Sources...

Open Source File...

Export G »
Launch SDK

Figure 48: Launching SDK

The next window pops up, click on OK. This means that the folders and files created by SDK will be
stored in the same directory as the Vivado project itself.

Page 19 of 25

Chapter 1 | Joseph Attard

¢ Launch SDK X

Launch software development tool.

Leave as is

Exported location: = & <Local to Project= v

Workspace: | & <Local to Project=

v
o

Figure 49: Store the SDK project within the Vivado Project

| Welcome #

A M annds A wlissatlar P R 2l | —
. Create Application Project o

Create a new Xilinx® SDK project ‘ Go throt

> P

Figure 50: SDK opens

flashingl FD_attempt1.sdk - C/C++ - blockdesign_attempt1_wrapper_hw_platform_0/system.hdf - Xilinx S
File Edit Navigate Search Project Run Xilinx Window Help
milhg B> R vite v O vin DA E: S vit TS

[Project Explorer & EE|Y V=8 g system.hdf &

v [blockdesign_attempt1_wrapper_hw_platform_0 Iockdesig n_attem pt1_wrapper_
= blockdesign_attempt1_wrapper.bit

ps7_init_gpl.c . . . Design Information

psinitgpth A prolec.t 1S aUtomatlcall¥arget FPGA Device: 72020

ps7_init.c created in SDK Part: xc72020clg400-1

ps7_inith Created With: Vivado 2017.4

@ ps7_inithtml Created On: Wed Feb 28 13:40:39 2

2 ps7_init.tcl

[system.hdf Address Map for processor ps7_cortexa9 [(
Cell Base Addr High
ps7_intc_dist_0 0xf8f010... Oxf8fi
ps/_gpio 0 0Oxe000a... 0xeQC
ps7_scutimer_0 0xf8f006... Oxf8f(
e cler 0 nviannnn nvfan

Figure 51: An SDK project is created automatically

Page 20 of 25

Chapter 1 | Joseph Attard

Now that SDK is opened, one must create a First Stage Boot Loader File in short FSBL file. This file is a
bootloader file and once copied to the SD card, and the Zynq 7 is powered up, it will look for this
bootloader file to start operating.

‘Bl flashingl ED_attempt1.sdk - C/C++ - blockdesign_attempt1_wrapper_hw_platform_0/system.hdf - Xilinx SDK
File E dvigate Search Project Run Xilinx Window Help

New @ 2 Alt+Shift+N > & Application Project @ 3
Open File... El SPM Project

i
[& Open Projects from File System... i, Board Support Package
| =5

I Project...
Close Ctrl+W hw_platform
Close All Cirl+Shift+ W &9 Source Folder
s ! : 5 Folder
Crvan el C© & - —

Figure 52: Creating a new application
Click on File, then select New, a sub-menu appears on the right, click on Application Project.

Project name: BlockDesignHWwrapper_FSBL @

[+ Use default location

name the FSBL file

TURMN_V12_201710300ynq 7020\ flashingLEDattempt 1\flashingLED

default

OS Platform: standalone ~

Target Hardware
Hardware Platform: blockdesign_attempt1_wrapper_hw_platform_0 @ Note ~ | New...
that the hardware

platform is taken 1
the board files we
included before

Processor: psf_cortexa9 0

Target Software
Language: '3';,\-' C '\,-,,1 C++
32-bit
N/A
Board Support Package: (®) Create New BlockDesignHWwrapper_FSBL bsp

click on next

z jack Next > Finish Cancel

Figure 53: Naming the FSBL project

Figure 53 shows the new window that pops up. All that must be done is just give it a name. It is
recommended to include the letters FSBL in your project name so that one can distinguish it from the
C project that could be generated later!

As Figure 53 suggests, click on NEXT.

Page 21 of 25

Available Templates:

Chapter 1 | Joseph Attard

Dhrystone

Empty Application

Hello World

IwlP Echo Server
Memory Tests
OpenAMP echo-test
OpenAMP matrix multiplication Demo
OpenAMP RPC Demo
Peripheral Tests

RSA Authentication App
Zyng DRAM tests

ﬁ 1: select this

| A

First Stage Bootloader (FSBL) for Zyng. The FSBL
configures the FPGA with HW bit stream (if it
exists) and loads the Operating System (OS)
Image or Standalone (SA) Image or 2nd Stage
Boot Loader image from the non-volatile
memory (NAND/NOR/QSPI) to RAM (DDR) and
starts executing it. It supports multiple
partitions, and each partition can be a code
image or a bit stream.

@ < Back

Figure 54: Selecting the type of the project

2: click on finish

O

Next > | Finish | Cancel

Figure 54 shows how the FSBL project type is selected. So, highlight Zynqg FSBL first and then click on

FINISH.

Peripheral Drivers

Drivers present in the Board Support Package.

ps7 afi 0 generic
L4

Overview| Source

= O 2 problems ¥ Tasks & Console = erties ESDK

view console

8 9 RMBvmv | T
CDT Build Console [BlockDesignHWwrapper_FSBL_bsp] 11 :
make -L ps/_cortexav_b/l1DSrc/XILrsa_vi_4/Src -s Inciude SnE :
"Running Make libs in ps7_cortexa9_e/libsrc/canps_v3_2/src" 11:
make -C ps7_cortexa9_@/libsrc/canps_v3_2/src -s libs "SHELL=C 11:
"Compiling canps" 11:

W

< > <

Figure 55: Viewing the Console in SDK

~ 0 EISDKLog =

23:44 INF

:23:46 INF
123:47 INF
123:47 INF

23:47 INF

To create the FSBL project, SDK takes a while dependent on the type of processor one has, it may

take several minutes.

Page 22 of 25

Chapter 1 | Joseph Attard

LEDonOff - C/C++ - LEDonOFF_FSBL_bsp/system.mss - Xilinx SDK
File Edit Navigate Search Project Run Xilinx Window Help

; . A s] e outpur, proming
il g [B~| @R vOoOv R D RRBES V¥ viv o .
Close Unrelated Projects entation: standalone_v6_°
[Project Explorer = A&|ly v=8
. N Build Configurations > .
5 LEDonOFF_FSBL r|ght click on the LEDonOF tral Drivers
v LE[B)SS(;FF*FSBL*bSp FSBL project HUIT 2 ? present in the Board Supf
i ocumentation F P 3
= ps7_cortexad 0 created el 1705 Dl datamover 0 axidma
o - Compare With >
 Makefile Target Infor P . Source
W, system.mss ThisBoard € snnecti Restore from Local History... —
v (@ Z-turn7020_hw_platform . .
@ ps7 init gplc Hardware Sf jare Sel C/C++ Build Settings) warnings, 0 others
- Targe i i !
ps7 init gplh % 1cF AglCEERE R R select Create'Boot Image
[@ ps7_init.c Operating § | TefGd M. Change Referenced BSP nings (2 items)
ps7_inith Board Supp B2 Create Boot Image
@ ps7_inithtml Ne Team >
= ps7_init.tcl Vers P .
32 system.hdf Descrip; nrmmm

Figure 56: FSBL project created

Figure 56 shows a newly created FSBL project, that is part of the main Vivado project. The next step is
to create a boot image file. This will be copied to the SD card, then the Zyng 7 will look for it, as soon
as it is powered up. To create a boot image file, one must right-click on the newly created FSBL project
and from the list, choose create boot image file. This is shown in figure 56.

%

Create Boot Image

Creates Zynq Boot Image in .bin format from given FSBL elf and partition files in specified output folder.

Architecture: Zyng ~
(®) Create new BIF file O Import from existing BIF file

Basic Security

Output BIF file path: | GA\Z-TURN_V12_20171030\Zynq7020\flashingLEDattempt1\flashingLED_attempt1\flashingLED_attempt1 .sdk\BIockDesignHerapper_FSBL\boctir‘ Browse...

UDF data:
[spiit

Output path:

‘ Browse...

Qutput format: BIN

| GA\Z-TURN_V12_20171030\Zynq7020\flashingLEDattempt1\flashingLED_attempt1\flashingLED_attempt1 .sdk\BIockDesignHerapper_FSBL\boctir‘ Browse...

Boot image partitions

Encrypt...
NzZynq7020\flashingLEDattempt1\flashingLED_attempt1\flashingLED_attempt1.sdk\BlockDesignHWwrapper_FSBL\Debug\BlockDesignHWwrappedq FSBL.elf none Add
lashingLEDattempt1\flashingLED_attempt1\flashingLED_attempt1.sdk\blockdesign_attempt1_wrapper_hw_platform_O\blockdesign_attempt1_wrapper.bit none
both the .bit file and the FSBL files are automatically included in the bootloader Delete
file being created Edit

Figure 57: Create Boot Image Window

A new window pops up. In the lower part

Ei of this window, one can find the FSBL.elf

click here Up . file and the .bit file created earlier in

Down - Vivado. So, the Zynq 7 first reads the

‘I:/I’ > Eel bootloader file and then reads the .bit file

Preview BIF Changes Cancel 5::r to create the hardware in the
""" programmable logic part. Click on Create

= r's

Image button and SDK will generate an
image file that has to be copied to the SD card for booting the Zynqg 7.

Page 23 of 25

Chapter 1 | Joseph Attard

Peripheral Drivers

Drivers present in the Board Support Package.

ps7 afi 0 aeneric

< The console shows the
Overview CEINE G boot image file is created

B Console sl
LG BB v ¥~
CDT Build Console [BlockDesignHWwrapper_FSBL]
mMaKke: NOTNiNg TO DE JOne TOor main-Dulld ~
12:05:54 Build Finished (took 317ms) <:
v

Figure 58: Console shows the image file ready

Copying the image file to SD card

After the image file is created, the next step is to copy it on SD card. This is done just using the normal
copy/paste combination of commands in Windows. However, one has to find the right image file and
the following snap shots shows the steps.

File path
-~ v « Z-TURN_V12_20171030 » Zynq7020 » LEDonOff v U | Search LEDonOf
o} ize v New fold 0 a .
. ewiolder this is my project

1 3D Objects “ Name Date modified Type
= Desktop metadata @ 20/02/2018 22:42 File folder
& Documents LEDonOFF 20/02/2018 22:23 File folder
4 Downloads LEDonOFF_FSBL 20/02/2018 22:47 File folder
b Music LEDonOFF_FSBL_bsp 20/02/2018 22:46 File folder
 Pictures RemoteSystemsTempFiles 20/02/2018 22:42 File folder

_ /) I A6 . N
@ Videos Z-turn7020_hw_platform 20/02/2018 22:46 File folder

=l SDK 20/02/2018 22:42 Text Document

Figure 59: The Project's location

Figure 59 shows the project location in the hard disk.

&) s | bootimage -
Home c i
&« v 4 > This PC » New Volume (G) » Z-TURN_V12_20171030 > Zynq7020 > LEDonOff » LEDonQFF FSBL » bootimage v
Name Date modified Type Size
Quick access copy this file ONLY
) BOOT 20/02/2018 22:58 PowerlSQ File 4,053 KB
- = -
& OneDrive - Malta Coll ¢y | eponoFF FspL 20/02/2018 22:58 PowerlSO File 1KB
#& OneDrive - Personal the boot image file is stored in the FSBL folder created by SDK
v = This PC
3 3D Objects
m Desktop

Figure 60: Location of the image file

Page 24 of 25

Chapter 1 | Joseph Attard

Figure 60 shows the location of the boot image file that must be copied to SD card using the copy/paste
commands in Windows. Figure 60 also shows that only the BOOT file has to be copied only!

Insert an SD card in an SD card to USB adapter. Insert the adapter in the USB port in the laptop or PC.
Windows should detect the SD card and opens a new window showing the contents of the SD card.
Use the copy/paste commands in Windows to copy the BOOT image file.

After copying the file, make sure to disable or disengage the SD card from Windows not to corrupt it.
Insert it in the slot of the Z-turn board, power up the board and the LEDs should light up. Please note
that as the board schematics dictate, the LEDs need a logic 0 on the pins for them to light up. Enjoy!

Page 25 of 25

Steps to create an A9 Soft core project using both Vivado and SDK

Introduction

In this chapter, the ARM Cortex A9 will be used to control the flashing of LEDs. This time, instead of
writing VHDL code to create hardware, C instructions will be written in a typical C project. So, in this
project, the author will show how to create a C project from SDK and which functions should be used
to light the LEDs located at MIO 0 and MIO 9. Once again, the whole process how to create a project
will be shown so that one will become more familiar with the steps needed to create a project in
Vivado.

Starting a new project in Vivado

Quick Start
Create Project i3 ick here
Open Project

Open Example Project

Tasks

Manage IP

Open Hardware Manager

Xilinx Tl Store

(: XILINX 2) @here

Figure 2. 1 : Starting a Project in Vivado

Figure 2.1 speaks for itself, click on Create Project

Project Name
Enter a name for your project and specify a directory where the project data files will be stored. ‘

VIVADO!

1) give the project a name

HLx Editions
Projectname:| |ZyngPS_UART_flashingLED |
Project location: G/Z-TURN_V12_201710307Zyng7020 2) here you can create a subfolder E
Q ulcC k Sta l’t e however this is unnecessary since Vivado will
Project will be created at G/Z-TURN_V12_20171030/Zynq7020/ZynqPS_UART_flashingLED create a folder for
Create Project you automatically

Open Project »

Open Example Project gf”) click on NEXT

Figure 2. 2: Name the Project

Give a name to the project and make sure that it will be stored in the desired folder. Click on NEXT
below.

Page 1]20

¢ New Project

Project Type
Specify the type of project to create. ‘

o RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

Post-synthesis Project You will be able to add sources, view device resources, run design analysis, planning and

implementation. . ..
leave this page as it is

and click on NEXT below
110 Planning Project

MNn nnt enarife dacinn cnnirrae Yo wiill ha ahla tn viow natinarkana racnurrac

Figure 2. 3: Type of Project Page

Figure 2.3 shows the type of project one can use, since this project will be based on the hard core A9
processor or the Processing System part of the Zynq 7, this page will not affect the project, so it will
be left untouched. Click NEXT.

¢ New Project x

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new
source file on disk and add it to your project. You can also add and create sources later.

+

4

at this point you do not need to add any source files for
now

Use Add Files, Add Directories or Create File buttons below

Add Files] ‘ Add Directories ‘ l Create File

Figure 2. 4: Adding Source Files

Figure 2.4 asks to add source files. Again, since this project will focus on the Processing System part of
the Zyng 7, no source files need to be created at this point. Click on NEXT.

Page 2|20

Add Constraints (optional)
Specify or create constraint files for physical and timing constraints. '

for this page, we do not need to add any constraints file so click on
NEXT for this page

Figure 2. 5: Adding Constraints File

The next page asks for the constraints file or how the pins will be connected. This is unnecessary
because since the Board Support Files have been included in Vivado folder as described in chapter 1.
So, click on NEXT.

Select {8 Parts [l Boards <: 1) click on boards

v Filter/ Preview

Vendor: All v
Display Name: All v
Board Rey. Latest N

Reset All Filters

you need to install the XML files for your board

searet first for this to be available. | have covered this

DisplayName jn another document Vendor BoardRev Part

@ Kintex-Ultrascale Alphadata board alpha-data.com 1.0 @ xcku060-fiva1156-2-e ~
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d 8} xc72020clg484-1

| @ Z-turn Board (MYS-72020-C) <: select your bo#ﬂﬂrir.cum 4) xc72020clg400-1

(E Artix-7 AC701 Fvaluation Platform h xilinx com 11 &) xc7a200ifhaR7R-2 b

Figure 2. 6: Selecting the Z-turn Board

Figure 6 shows how to select the Z-turn board from the list. This will make sure that Vivado and SDK
will configure the environments to comply with the Z-turn board peripherals and characteristics.

Just to refresh one’s memory, figure 2.7 and 2.8 below, show the XML files downloaded from Github
and where these files should be stored within Vivado directory.

X T_] New item ~ \/} Open ~ EH Select all
—J W path ‘TJ Easy access ¥ Edit Select none
opy Paste L Move Copy Delete Rename New Properties . .
#| Paste shortcut to~ to~ - folder - @ History DD Invert selection
Clipboard Organize New Open Select

1 > This PC » New Volume (G:) » Z-TURN_V12_20171030 » 01-Document » JoeUserGuides * GitHub_Z_turnBoard_stuff » zturn-stuff-master »

erGuides ™ Name Date modified Type Size
Collect

yng t.ofle zturn-stuff-master 05/02/2018 19:21 File folder

User Guide

Figure 2. 7: Github folder

Then after extracting the files, copy them to:

Page 31|20

>< TP New item ~ Iil open ~ [selecta

f] Easy access ~ Edit Select n

- ,Ef ki((v Delvete Re n f:l:_-j\:r Drc}pver‘tles = e B8 tvert =
Clipggrer=re ————r— — — Selec
r > This PC *> Local Disk (C:) > Xilinx > Vivado > 2017.4 > data > boards > board_files >
Guides 7™ Name Date modified Type <
q Collect ac701 02/02/2018 16:42 File folder
ser Guide adm-pcie3-ku3 02/02/2018 16:42 File folder
~ Malta ¢ adm-pcie-7v3 02/02/2018 16:42 File folder
kc705 02/02/2018 16:46 File folder
- Person kcu105 02/02/2018 16:48 File folder
tion Elect zc702 02/02/2018 16:43 File folder
zc706 02/02/2018 16:48 File folder
zcu102 02/02/2018 16:50 File folder
= fal fal [a'k! d1o-4 Cil Tl
acts I zturn-7z020 05/02/2018 19:53 File folder I
P
2nts

Figure 2. 8: Z-turn folder within Vivado

V | VADO ’ New Project Summary

HLx Editions
© Anew RTL project named 'UART_LED" will be created.

No source files or directories will be added. Use Add Sources to add them later.
No constraints files will be added. Use Add Sources to add them later.

@ The default part and product family for the new project
Default Board: Z-turn Board (MYS-72020-C)
Default Part: xc72020cig400-1
Product Zynq-7000
Family: Zynq-7000
Package: cig400
Speed Grade: -1

i: XI LI NX To create the project, click Finish G
e | [G
Figure 2. 9: Project Summary Page

Figure 2.9 shows the project summary page. Click on FINISH to open the project in Vivado.

£ Settings
Qa = £ + hd
Add Sources Settings Edit
Language Templates Design Sources Create Block Desi X
u [reate Block Design
> . Constraints d UART_LED
IP Catalo i braries mp GiUZ-TURN_\
¥ g Horarchy |RCoen Comeill oicase specify name of block design. -
a a Zyng-7000
) 2) give your block design a name ’ e
Vv IP INTEGRATOR Properties Z-turn Board
1) click on "create block
Create Block Design L |, Design name: |blockhe5ign <: I Jcti=ines
design e
Open Block Design 1
Select an object t¢ Directory: 53 <Local to Project= v VHDI
Senerate Block Design
Specify source set: Desi ources g
TclConsole | Messages | Log
v SIMULATION .
az e Heickox [
Run Simulation - A
Name Constraints Swaws VWIS TS WO T Trwo Tuarrower Failed F

Figure 2. 10: Creating a new Block Design

Once the project environment is opened in Vivado, one can immediately create a new Block Design.
This will open a new schematic window where one can connect all the components in the design.
Follow the steps in Figure 2.10 above to create a new schematic.

Page 4120

Diagram

200
w0 + ® C £
3) write Zynq here ﬁ 1) click on the + sign
Search: zyng (1 match) <j 2) this window pops up
4F ZYNQT Processing System ' Dbutton to add IF

4) Zynqg 7 processing
system is shown.
5) double click on it

Figure 2. 11: Schematics Window

Figure 2.11 shows an opened schematics window. It also shows the steps to create a new A9 hardcore
processor always referred to as the Processing System.

Diagram x Address Editor X

@ @ N m Q + ¥ C o

Designer Assistance available. Run Block Automation <j click here

processing_system7_0
he A9 soft core S
ppears on the DOR +|||
anvas — FIXED_IO +|||
M_AXI_GPO_ACLK ZYNQ M_AXI_GPO + fii

FCLK_CLKOD
FCLK_RESETO_N

’,

ZYNQ7 Processing System

Figure 2. 12: Block Automation

After the Processing System part is created, one must click on Run Block Automation so that all the

hardware peripherals of the A9 core will be enabled. This is shown in Figure 2.13. Make sure that
Apply Board Preset will be ticked!

Description
v /A

M Astoralion {1.cuk of 1 aelectaa) This option Sets the board preset on the Processing System. All current properties will be
overwritten by the board preset. This action cannot be undone. Zynq7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DR Interfaces

7 % processing_system7_0

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration

Instance: /processing_system?7_0 (Gavathis windowass
Options

Make Interface External: FIXED_IO, DDR

ApplyBoard Preset |/

Cross Trigger In: Disable v

click OK
Cross Trigger Out Disable v

Figure 2. 13: Apply Board Presets

Page 5|20

processing_system7_0

.

DDR - ||t

FIXED_IO + |||mey 3~

ne_o +|||

USBIND_O + |||

i[4S AXI_HPO - M_AX|_GPO (e

= . A;(I G_Pﬂ e ZYNQ TTCO_WAVEQ _OUT =

T © TTCO_WAVE!1_OUT =
S_AXI_HPO_ACLK

TTCO_WAVE2_OUT |=

FCLK_CLKO e

FCLK_CLK1

FCLK_RESETO_N o

|||+ s_Axi_HPO_FIFO_CTRL

ZYNQ7 Processing System —

Figure 2. 14: Connecting the AXI clocks

Make sure to connect the AXI clocks as shown in Figure 2.14 to avoid errors.

Now it is time to create a Hardware Wrapper. This serves as a top-level block to the sub-systems in

the system.
v PROJECT MANAGER ® i
2) go to sourc, Sources x Design I Create HDL Wrapper. | 4) choose thi X Address Editor X ?0
& setings Q z & + View Instantiation Template g malqQ + B C 9 f
- = " ‘w
Add Sources N { Generate Output Products... ' sic
Design Sources (1 processing_system?_0
Language Templates s b ; l“ Reset Output Products... oon)| —
X . b pockdesion(| FOE0. 10 || FIXED_IO
2 IPcatalog 3) right click onthé » - constraints | .0 4]
. { USaND_0 4
o mﬂblo‘:k design Hierarchy |P Sources | “I :::j::'m'm ZYN O\ 'Tcn"v;:iz'*-
| N ¥ nca:mvntcuv
Create Block Design X Remove File from Project ' i TIcOWAVE2 OuT
Source File Properties s co - 1) connect anyone
Open Block Design & blockdesignbd l ‘cu‘:“;-ﬁu“"‘ of the clocks with
Generate Block Design pm— | e Disable File At M Z3T Pcean) Svies the AXI clock inputs
Hierarchv Update »

Figure 2. 15: Creating a Hardware Wrapper

¢ Create HDL Wrapper

You can either add or copy the HDL wrapper file to the project. Use copy option if
you would like to modify this file.

Options

O Copy generated wrapper to allow user edits

click here
® | etVivado manage wrapper and auto-update _

Addec
during

® N

Figure 2. 16: Let Vivado create all the settings

Page 6] 20

Referring to Figure 2.13 - after double clicking the block diagram of the A9 core, one must be aware
of how Vivado shows which peripherals can be used in software. Apart from others, there are two
UARTSs. At least UART 1 must be enabled, so that one will be able to use the basic C project template
called “Hello World” within SDK. Using this C project template, one will solve all the linker problems
between the software part and the hardware part. It is recommended to use this template and not
the blank C project template! If the UART peripherals are removed from the Zynq 7 Processing
System, then this C project could not be used in SDK.

If peripherals that are not used in the processing system part are disabled, the firmware might not
work, so it is recommended that when using the Board Support Files, one will NOT disable any of the
peripherals already enabled in the preset version of the Zynq Processing System!

Since in this project, the focus is on how to enable the Processing System of the Zyng 7 and also how
to use the built-in functions in SDK to enable certain peripherals, at this point, no VHDL module will
be created, so after the HDL wrapper is created, one can generate the bit-stream file straight away!

After creating the HDL wrapper, one can generate the bit stream.

Bitstream Generation Completed > | At this point, one must note that no constraints files have
been created or used. This is because this is taken care of

@ osveam ceneraton successtuly compitea. by Vivado. The pins of the SoC are allocated according to
Next I the board support files. So one can do without the

(® Open Implemented Design constraints file when working with the IP core.
View Reporis
Open Hardware Manager

Generate Memory Configuration File | Figure 2. 17: Bitstream File generated

Don't show this dialog again G

Figure 2.18 shows the next step after the bitstream file has been created. The hardware file must be
exported and this is done from the File menu. File = Export = Export Hardware

-

+/ synth_1 (active

 impl_1

Out-of-Context Module Runs
> «f blockdesign

! Add Sources...
b
Open Source File... Export Hardware...
Export Bitstream File...
Export b Export Simulation...
EX JT : —
B et L P T e

Figure 2. 18: Exporting the Bitstream File

Page 7120

¢ Export Hardware X

Figure 2. 19: Include the Bitstream File
Export hardware platform for software

devpropment tools. ’
@ you need to tick this box

Include bitstream

Exportto: @ <Local to Project= v
o
Make sure to tick the square box as shown in Figure2.19.

Then one can open SDK from Vivado. This will create a subfolder within the hardware-project-folder
where all the SDK files will be saved.

Click on File = Launch SDK

>
! Add Sources...
Open Source File...
> Save the SDK project <Local to the project>
Figure 2. 20: Launching SDK fromo within Vivado
Export N |
Launch SDK
. e e

S UARI_LED.sdk - C/C++ - blockdesign_wrapper_hw_plattorm_0/system.hdt - Xilinx SDK
File Edit Navigate Search Project Run Xilinx Window Help

il [BvyE v vOvy RiDBPA@R G 5 v v oo

e iect Bxplorer © EEIY T8 & system.hdf %

I blockdesign_wrapper_hw_platform.0 blockdesign wrapper hw_platform 0 Hardware Platform &
é ps?_init_gpl.; o Design Information
ps7_init_gpl.h

Target FPGA Device: 7z020

B ps_initc Part: xc72020clg400-1
ps7_inith Created With: Vivado 2017.4
@ ps/_inithtml Created On: Thu Mar 22 19:51:10 2018
= ps7_init.tcl
I system.hdf Address Map for processor ps7_cortexa9_[0-1]
SDK opens and immediately creates a Cell Base Addr High Addr Slave I/f Mem/Reg
hardware project. ps7_intc_dist 0 0xf8f010... Oxf8fO11ff REGISTER
ps7_gpio_0 0xe000a... 0xe000afff REGISTER
ps7_scutimer_0 0xf8f006... 0xf8f0061f REGISTER
now since we are booting from the ps7_slcr 0 0xf80000... 0xfBO0OFff REGISTER
SD card, we need to create a FSBL ps7_scuwdt_0 0xf8f006... Oxf8fO06F REGISTER
- - e 1Drachas N NufOfNIN NuFOfNIFE RCoICTEDR

Figure 2. 21: Opening SDK

Page 8120

Figure 2.21 shows the SDK linked to the Vivado project. The next step is to create a First Stage Boot
Loader (FSBL) project that will link all the C and VHDL project together. Figure 2.22 shows the steps
to create an FSBL project which will be used by the Zynq 7 Processing System to load both the
hardware and software of the system.

Bl T Voo g s s B LI TR T T T R A - E

ile Edit Navigate Search Project Run Xilinx Window Help

New 1) Alt+Shift+N > & Application Project 2)
Open File... B SPM Project
2 Open Projects from File System... Wi Board Support Package
9 Project...
Close Ctrl+W
Close All Cirl+Shift+W &9 Source Folder
o ’ : & Folder
S Ctrl+S [Source File

Figure 2. 22: Creating an FSBL project

Project name:| UART LED_FsBl| 1) give a name to the FSBL project |

Use default location
GAZ-TURN_V12_20171030\Zyng7020\UART_LED\UART_LED.sdK\UART_LE Browse... Figure 2. 23: Naming the FSBL project
default \ .
Figure 2.23 show what one must fill,

to create a new FSBL project.

OS Platform: standalone

Target Hardware

Hardware Platform: blockdesign_wrapper_hw_platform_0 >~ New...
Processor: ps7_cortexa9_0 b
Target Software G it'saC proiect
Language: © C O C++

32-bit

the name is mirrored
A here P
Board Support Package: (®) Create New | UART_LED _FSBL _bsp (:
)

Use existing
click NEXT
@ < Back Next > Cancel

9| 20

Empty Application configures the FPGA with HW bit stream (if it

Hello World exists) and loads the Operating System (OS)
IwlIP Echo Server Image or Standalone (SA) Image or 2nd Stage
Memory Tests Boot Loader image from the non-volatile

OpenAMP echo-test

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

Zyng DRAM tests

memory (NAND/NOR/QSPI) to RAM (DDR) and
starts executing it. It supports multiple
partitions, and each partition can be a code
image or a bit stream.

1) choose this

click FINISH

@ < Back Next > Cancel

Figure 2. 24: Choosing FSBL form the List

NdITIe: sldnadione

Version: 6.5

Description:

Standalone is a simple, low-level software layer. It provides access to basic processor features such as caches, i

and exceptions as well as the basic features of a hosted environment, such as standard input and output, profi

and exit.

Documentation: standalone v6 5

Peripheral Drivers

<
through

Overview|Source

[l Problems #ITasks B Console 2 [Properties = SDK Terminal
LhElHEEFA&I By

CDT Build Console [UART_LED_FSBL_bsp]

RUMNMNLng ridre 1nciuue J."I.pSI_CUl"LEKd‘J_UIJ.J.Uhl'L/KJ.J‘.I'SH_VJ._"F/ sro N
make -C ps7_cortexa9_@/libsrc/xilrsa_v1_4/src -s include "SHE
"Running Make libs in ps7_cortexad9_e/libsrc/canps_v3_2/src"
make -C ps7_cortexa®_e/libsrc/canps_v3_2/src -s libs "SHELL=C
"Compiling canps" v
£ hY

Figure 2. 25: SDK console

134 INFO

22:00

22:00:
22:00:
22:00:
22:00:

the console shows if there are any erros
Drivers present in the Bo upport Package. . .
@ and the stages that the software is going

~ T [ESDKlog =

- img—— m =

Launching
37 INFO 1 XSCT serv
39 INFO : Successfu
39 INFO : Processin
39 INFO : Successfu

Figure 2.25 show the SDK console running. This is a useful part of SDK and therefore one must make

sure to listen to it!

Now after the FSBL project has been successfully created, one must create a C project. This project
consists of many C source files and header files, together with the functions needed by the

application in quation!

Page 101 20

Bl UART_LED.sdk - C/C++ - UART_LED_FSBL_bsp/system.mss - Xilinx
File Edit Navigate Search Project Run Xilinx Window Help
inihg | & @it vOviRiDHAES Vv

-

[&5Project Explorer £ E&lYy v=-o

v (& blockdesign_wrapper_hw_platform_0

UAR
2 blockdesign_wrapper.bit
[@ ps7_init_gpl.c Mod
ps7_init_gpl.h
[@ ps7_init.c Target
ps7_inith This B
@ ps7_inithtml Hardy
2 ps7_init.tel
[system.hdf
= UART_LED_FSBL Opera
UART_LED_FSBL_bsp “Board
an FSBL C project and a
board support package 0

project are created

Figure 2. 26: FSBL project created

Apposaun s

Create a managed make application project. create a new application D
project again
Project name: UARTiLEDiCipmgram‘ |
Use default location o give itaname
G\Z-TURN_V12_20171030\Zyncj7020\UART_LED\UART LED.sdk\UART_LE Browse...
default
OS Platform: |standalone V|
Target Hardware
Hardware Platform: blockdesign_wrapper_hw_platform_0 ~ | New...

Processor: ps7_cortexa9 0
Target Software
Language: ®c Oc++
32-bit .. .
' this is mirrored from
N/A

above

Board Support Package: () Create New | UART_LED_C_program_bsp

O use existing |UART_LED_FSBL_bsp

Templates

Create one of the available templates to generate a fully-functioning application project.

Available Templates:

Dhrystone

Empty Application
IwIP Echo Server

Memory Tests

OpenAMP echo-test

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

Zyng DRAM tests

Zyng FSBL

Let's say "Hello World" in C.

since we have at least
one

UART enabled. the SDK
will go directly to the
application program
Hello world.

Now this is a basic template that
we can still add other GP10s or peripherals by writing their
respective functions.

the UARTSs because this will save

Figure 2. 28: Creating a C project

only has the UART enabled but

ou a lot of time because it is

Figure 2. 27: Creating a C project

To create a new C application, one must file
click on FILE -> new -> new application -> the
window of Figure 2.27 pops up. Give the C
project a name and leave the rest s it is.

As already stated previously, it is advisable to
use this template as the base of the C project
because Vivado will not generate any

unnecessary errors due to incorrectly created
C project.

=

It is advisable to only use this template and enable at least one of

Page 11120

Only the Hello World template is good to build a C application. It is advisable to make sure that one
of the UARTSs is enabled as otherwise this application will not be available to the user.

The above happened to the author when he tried to open the hello world template when in Vivado
the author disabled all the peripherals and only the blank-application-project was available!!

& Project Explorer &

B ¥ -

v @ blackdesign wrapper_hw_platform 0 u

blockdesign_wrapper.bit
@ ps7_init gplc
5 ps7_init_gplh
@ ps7_initc
5 ps7_inith
@ ps7_inithtml
ps7_inittcl
® system.hdf
& UART_LED_C_program
® UART_LED_C_program_bsp
& UART_LED_FSBL
® UART_LED_FSBL_bsp

= ps/_mLw

[system.hdf

(E: UART_LED _C program_bsp
———————

UART_LED_FSBL bsp

4 Target Connections
= Hardware Server
= Linux TCF Agent
& QEMU TcfGdbClient

EIL

) =>

v drivers
ps7_cortexa9_0

¥s Figure 2. 29: The C project residing on top of the other two projects

» Now one must make sure that UART 1 is enabled because the USB to
= UART chip is only connected to UART 1 which resides at MI0-48 and

Th

+ MIO-49.

the C project
is created Be

of the project!!

i Copy
Paste

X Delete
Source
Move...
Rename...

&1 Import...

& Export...
Refresh
Close Praject
Close Unrelated Projects

Build Configurations
Run As

Debug As

Compare With

Restore from Local History..

Wl Board Support Package Settings

e-generate ources

Team

Configure

v Overview . .
Configuration for OS:
standalone

Name

Ctrl+C
Ctrl+V
Delete

b3

hypervisor_guest
stdin

stdout
zyngmp_fsbl_bsp

Figure 2. 30: Modifying the Board Support Package

1) Right-click on the name of the C project.
2) Click on the Board support package of the C

project.

3) Then click on Board Support Package Settings

Control various settings of your Board Support Package.

standal®} change to UART 1

Value

false

ps7_uart_1
ps7_uart_1 v
false

false
false

Default
false
none
none
false
false
false

Type
boolean
peripheral
peripheral
boolean
boolean
boolean

Description

Enable hypervisor gut
stdin peripheral
stdout peripheral
Disable or Enable Opt
Enable MicroBlaze Exc
Enable S/W Intrusive

we changed to UART 1 because our USB to TTL chip is connected to UART1 not UART 0

Figure 2. 31: Changing the Board Support Packages to change UART 1 settings

% This is done by changing the settings of the board support package

n_O\sy

12 | 20

Documentation: standalone_v6_5

Peripheral Drivers

Drivers present in the Board Support Package.

<

Overview|Source G

= B Console

RUNN1Ng rMakKe 1nciude 1n ps/_coriexaz_v/ .l rc/usops_ve_44/5rc A
make -C ps7_cortexa9_e/libsrc/usbps_v2_4/src -s include "SHEL
"Running Make include in ps7_cortexa9_e/libsrc/xadcps_v2_2/src
make -C ps7_cortexad_e/libsrc/xadeps_v2_2/src -s include “SHE

once any of the bsp files is changed, the SDK will re-

generate all the softwares

~ 0 ESDKlog #

o EGE - B/ MBS~ 27.08:39
CDT Build Console [UART_LED_C_program_bsp] 22:00:39

22:00:39
22:33:40
22:35:31

~

INFO
INFO
INFO
INFO
INFO

: Successfully done setting XSCT ser\
: Processing command line option -hws
: Successfully done setting SDK works
: Refreshed build settings on project
: No changes in MSS file content so r

Figure 2. 32: Console in SDK shows all the transformation being done

i ps7_inith
@ ps7_inithtml
= ps7_init.tcl
I system.hdf
v £ UART_LED _C program
Binaries
w! Includes
& bootimage
= Debug
¥ (= src
lé helloworld.c
platform_config.h
lg platform.c
platform.h
& Iscript.Id

Figure 2.33 show the location of the Hello
World, C program. Now it is time to open it
and write some code to flash an LED and send
data on the serial port.

Vivado also has an extra feature that once
you save the project it will start re-building on

its own.
open the source file

Figure 2. 33: Location of the C project in SDK

The Software Part in SDK

So far, the Vivado project was created and linked to the SDK from where C instruction could be written
to control in this application the two LEDs connected with pins MIOO and MIQ9 of the Processing
System part of the Zynq 7. Double-clicking on helloworld.c file will open it on SDK to be edited as

follows:

v ¥ Cproject
Binaries
' Includes
= bootimage
= Debug
& src
v [Cproject_bsp
i BSP Documentation
I = ps7_cortexad 0 I
» Makefile
i system.mss
5 FSBL
FSBL_bsp

Figure 2. 34: Location of all C functions

Figure 2.34 show the folder where all the C functions available to the
user reside. Click on the arrow pointing to this folder to reveal more

folders.

13 | 20

~ [Cproject_bsp

i BSP Documentation Figure 2. 35: C Functions Library
v (= ps/_cortexa9 0
& code Figure 2.35 shows one level deeper in the folder to reveal more folders

& indude that contain the functions of all peripherals enabled in the system.
& lib
Makefile
ih system.mss
& FSBL
i FSBL_bsp

& lib
v = I
& libsrc Figure 2. 36: Folders containing functions
& canps_v3_2

& coresightps_dcc v1_4 Figure 2.36 show various folders that contain the respective functions

&= cpu_cortexa9_v2_5 already written and ready to be used by the user. In this particular
& ddrps_v1_0 application where only two LEDs will be lit, and these LEDs are
& devcfg_v3.5 connected to MIOO and MIO9, the gpiops_v3_3 folder will be used
& dmaps_ v2_3 because this folder contains all the functions needed to configure the
& emacps v3_6 GPIO bank located on the PS part of the Zynq 7.

= generic v2 0

= gpiops_v3_3

= iicps_v3_5

= qspips_v3_4

&= scugic_v3_8

= scutimer v2_1
= scuwdt v2_1

= sdps_v3_3

= standalone_v6_5

= generic_vZ_0
¥ (= gpiops_v3_3
v & src Figure 2. 37: GPIO_PS functions

lgl xgpiops_g.c

) The adjacent files shown in Figure 2.37 contain all the functions
2 xgpiops_hw.c

needed to control the GPIOs that are located on the PS part of the
Zyng 7. Remember that these GPIOs have nothing to do with the
GPIOs connected to the PL part and therefore they have different
configurations and also different names! Make sure to select the right
folder from the list!

xgpiops_hw.h

lel xgpiops_intr.c

lg xgpiops_selftest.
lel xgpiops_sinit.c
lgl xgpiops.c

Sjaae
Makefile

L

14 | 20

Configuring the Processing System (PS) GPIOs

The following routine should be used to configure nearly all the peripherals from the Processing
System side of the Zyng 7. One must include the following include directive for the functions to be
eligible:

#include “xgpiops.h”
First look for the lookupConfig():
XGpioPs_Config *XGpioPs_LookupConfig(ul6 DeviceId)
The above function is located in xgpiops_sinit.c file.

The above function returns a pointer of type XGpioPS_Config while is passed a parameter of type
ule.

The DevicelD parameter can be replaced with XPAR_PS7_GPIO 6_DEVICE ID. This is located in
xgpiops_g.c file

Now cut the XGpioPs_Config from the name of the function above and paste it as one of the initial
data types at the beginning of the main (). Assign a name to this pointer as shown below:

XGpioPs_Config *ConfigPtr;
Then equate the above function to the name given to the pointer. The final result is shown below:

ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

Now its time to initialize the GPIO_PS peripheral. Use the following function:
532 XGpioPs_Cfglnitialize(XGpioPs *InstancePtr, XGpioPs_Config *ConfigPtr,u32 EffectiveAddr)

which is located in xgpiops.c file. The above function returns a type of signed 32 (s32) and is passed
various parameters.

So cut the s32 and paste it as part of the data type list at the top of the main function. Assign a name
to a variable of type s32.

s32 Status;

Cut and paste as one of the data types XGpioPs and give it a name as well at the beginning of the main

().
XGpioPS Gpio;
For *ConfigPtr use ConfigPtr as before so the above function will now look like this:
Status = XGpioPs_Cfglnitialize(&Gpio, ConfigPtr, ConfigPtr->BaseAddr);
The BaseAddr was taken from XGpioPs_hw.h file.

Now if one is to equate a function’s return variable to a variable just like what has been done with
XGpioPs_Cfglnitialize(), it is good practice to check its validity by writing the following if-statement.
If this if-statement is not included in the code, a warning is generated in the output file.

15 | 20

if (Status != XST_SUCCESS)

{
return XST_FAILURE;

}

Setting the Direction of the Pin and Enabling the Output

Now for each pin in the GPIO, one has to set its direction -whether the pin is going to act as an input
or an output. Also, if the pin is going to act as an output, one has to enable that output! The following
functions are used:

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)
void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)

The above two functions are located in XGpioPs.c file. Before each function, there is a description of
what the function should do and sometimes there are also hints on the parameters. So, make sure to
read the comments before every function to have a better understanding of its effects and also what
type of parameters should be passed to it!

The first function above:

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

returns a void and therefore expect nothing from it,

the first parameter that should be passed is the name of the instance — in this case it is &Gpio

u32 Pin is the pin number the function will be affecting, since in this particular example, two LEDs
connected to MIOO and MIO9 are going to be used, then this function should be written for two pins
—pin 0 and pin 9.

u32 Direction: for this parameter, the function accepts either 0 if the pin is going to act as an input,
or 1, if the pin is going to act as an output

now for the second function:

void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)
again, it returns a void so nothing should be expected from it
XGpioPs *InstancePtr should be replaced once again with &Gpio

u32 Pin should be replaced with the pin number — for this example Pin should be replaced with either
0 or 9, while u32 OpEnable should be replaced with 1 if the outputs are enabled and 0 if the outputs
are disabled!

16 | 20

Writing to the individual Pin

T

he last function that needs explanation is the following:

void XGpioPs_WritePin(XGpioPs *InstancePtr, u32 Pin, u32 Data)

T

he above function writes to the individual pins.

Once again it returns a void and therefore expect nothing once the function is ready.

Replace XGpioPs *InstancePtr with &Gpio

Replace u32 Pin with the pin number - in this case it hasto be 0 or 9

Replace u32 Data with either 1 for logic high or 0 for logic 0.

The LEDs connected to MIO 0 and MIO 9 on the Z-turn board are connected such that a logic 0 will
switch them on while a logic 1 will switch them off!

So the main() will look like this:

int main()

{

int Status;
XGpioPs_Config *ConfigPtr;
XGpioPs Gpio;/* The driver instance for GPIO Device. */

init_platform();

/* * Initialize the GPIO driver. */
ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7 GPIO © DEVICE_ID);
Status = XGpioPs_CfgInitialize(&Gpio, ConfigPtr,
ConfigPtr->BaseAddr);
if (Status != XST_SUCCESS)

{

return XST_FAILURE;
}

// LED1 gpio setting
XGpioPs_SetDirectionPin(&Gpio, 0, 1);
XGpioPs_SetDirectionPin(&Gpio, 9, 1);
XGpioPs_SetOutputEnablePin(&Gpio, 0, 1);
XGpioPs_SetOutputEnablePin(&Gpio, 9, 1);

while (1) {
XGpioPs_WritePin(&Gpio, 0, 0);
XGpioPs_WritePin(&Gpio, 9, 0);
delay();
XGpioPs_WritePin(&Gpio, 0, 1);
XGpioPs_WritePin(&Gpio, 9, 1);
delay();
}
cleanup_platform();
return 0;

17 | 20

Now since the A9 core will execute the above code very rapidly, a delay function was introduced so
that one can see the LEDs blinking. A typical delay function can be written as shown below:

void delay()

int i;
for (i = ©; i < 10000000; i++)
{
//do nothing
}

Another way to flash the LEDs on MIO 0 and MIO 9 simultaneously is by using the following functions
instead of the ones used in the main code previously.

void XGpioPs_Write(XGpioPs *InstancePtr, u8 Bank, u32 Data)

the only parameter that is different this time is the u8 Bank which has to be replaced with 0 as a
number, u32 Data can be replaced with either a decimal number which is not recommended for this
instance or better with a hexadecimal number. Thus, to write a logic 1 in both MIO 9 and MIO 0
simultaneously using the above function, one must convert it to:

void XGpioPs_Write(&Gpio, 0, 0x00000201);

The same procedure could be written for the direction function

void XGpioPs_SetDirection(XGpioPs *InstancePtr, u8 Bank, u32 Direction)

could be replaced with:

XGpioPs_SetDirection(Gpio, 0, 0x00000201);

And

void XGpioPs_SetOutputEnable(XGpioPs *InstancePtr, u8 Bank, u32 OpEnable)

could be replaced with:

XGpioPs_SetOutputEnable(&Gpio, 0, 0x00000201);

Again Gpio is according to how the XGpioPs *InstancePtr was equated at the beginning of the main()

XGpioPs Gpio;

18 | 20

Creating the Boot Image File

This time to create a boot-image file, one has to right-click on the C project and not on the FSBL
project! This is shown in figure 2.38 below:

Il PS7_] .
@ ps7. Open in New Window
B ps7, B Copy
[syst Paste
% Delt
¥ Bina Source
& Inclu Move...
& boo Rename...
& Deb 2 |Import...
&SI | py Export...
v (i Cproje i)
i BSP Build Project
v & psT. Clean Project
& oo Refresh
& in Close Project
& lik Close Unrelated Projects
& ik Build Configurations
& Mak
fin syst Run As
5 FSBL Debug As

8 FSBL_E Compare With

Restore from Local History...
4 Target Co v

= Hardw C/C++ Build Settings
= LinuxT ® Generate Linker Script
= QEMU . Change Referenced BSP

r@ Create Boot Image I

==

(®) Create new BIF file (O Import from existing BIF file

Basic Security

Figure 2. 38: Creating a Boot Image File

Figure 2.39 shows that this time, there are three files and
not two in the boot image file. This shows that now the
boot image file consists of the FSBL file, the bitstream file
and also the software file.

Output BIF file path: ‘ GA\Z-TURN_V1 2720171OSO\ZyanOZO\UARTfLED\UARTfLED.sdk\UARTfLEDfoprogram\bcotimage\UARTﬁLEDfoprcgran‘ Browse...

UDF data: ‘ ‘ Browse...
[split Output format: BIN ~
Output path: ‘ G\Z-TURN_V12_20171030\Zynq7020\UART_LED\UART_LED.sdk\UART_LED_C_program\bootimage\BOOT bin ‘ Browse...
Boot image partitions
File path Encrypt.. #
(bootloader) GAZ-TURN_V12_20171030\Zynq7020\UART_LED\UART_LED.sdk\UART_LED_FSBL\Debug\UART_LED_FSBL.elf none r | Add
GAZ-TURN_V12_20171030\Zynq7020\UART_LED\UART_LED.sdk\blockdesign_wrapper_hw_platform_0\blockdesign_wrapper.bit none T
GA\Z-TURN_V12_20171030\2ynq7020\UART_LED\UART_LED.sdk\UART _LED_C program\Debug\UART LED C program.elf none r Delete
you will know that everything is OK if you have three files Edit
Up
create image Down
< l I >

Figure 2. 39: Check files in Boot Image File

Sy

Preview BIF Changes Cancel

Page 19120

- T h M folder = £ HISIOTY (] miver e ssisuuun

ipfoard O@a nize New Open elect

» This PC » New Volume (G:) » Z-TURN_V12_20171030 » Zynq7020 » UART_LED > UART_LED.sdk » UART _LED_C program > bootimage

ides Moo Date modified Type Size
“ollect
o) BOOT 22/03/2018 22:40 PowerlSO File 4,085 KB
Guide) UART_LED_C_program 22/03/2018 22:40 PowerlSO File 1KB
ialta 1 .
notice the root
%erson copy the boot image and paste in the SD card
1 Elect

Figure 2. 40: Location of the Boot Image File

After the boot image file is created, it can be located in the C project and not the in the FSBL project,
so make sure to select the right boot image file!

Copy the boot file to the SD card and insert it in the SD slot on the Z-turn board. Enjoy!

20 | 20

Flashing LEDs simultaneously but independently from the Processing System and Programmable
Logic Fabric

Introduction

In this project, the versatility, flexibility and parallelism that could be achieved using the Zynq 7
System-on-Chip will be discussed. A VHDL entity that flash an LED will be created. After that, a
software program will be written in C that also flashes an LED connected to the one of the MIO pins
will be created. The VHDL entity will work independently from the program that will be flashed in the
Zyng Processing System. So, in this project, there will be two independent hardware working in
parallel!

The process how to create a project in Vivado and how to create a VHDL file have already been
explained in chapters 1 and 2 so those will not be covered anymore. This chapter will go through the
steps to achieve the goal of using both the Processing System and Programmable Logic independently
for the first time.

Defining the Port terminals of the VHDL entity

¢ Define Module X

Define a module and specify I/0O Ports to add to your source file

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked. ‘
Ports with blank names will not be written

Module Definition

this is the entity that you
Entity name PS_PL_project .
have created previously

Architecture name: Behavioral

/O Port Definitions

s
PoiN_ | Diec. | . | _ | here | am declaring the (1)
LEDout out v # 2 0 <: inputs and outputs of the

in v entity
@ >

Figure 3. 1: Creating terminals for the VHDL entity

Figure 1 show the procedure to write the port terminals of the VHDL entity that has been created
while setting up the project environment. Notice how a bus could be created!

Once Vivado has opened, look in the sources tab and double click on the name of the VHDL entity to
open it up to start writing code. This is shown in Figure 2 on the next page.

Page 1 of 19

PROJECT MANAGER - PS_PL

Sources
Q = ¢ |+ o
v Design Sources (1

“is PS_PL_project(Behavioral) (PS_PL_projectvhd)

» = Constraints double click on the entity

above and start writing
vour code

> Simulation Sources (1
project tree here

Hierarchy Libraries Compile Order

Figure 3. 2: Search for the VHDL entity

PS_PL_projectvhd X

GI/Z-TURN_V12_20171030/Zynq7020/PS_PL/PS_PL.srcs/sources_1/new/PS_PL_projectvhd

Q x B B N/ E Q i
k:chitectu:e Behavioral of P5_PL project is
after double-clicking the entity name, the source file is opened
begin

| opened the entity and | can start writing VHDL code here

43 end Behavioral;

Figure 3. 3: Entity Architecture

The way of thinking when writing code in VHDL is a bit different when compared to writing code for a
microprocessor. This is because even though VHDL contains sequential statements, one has to keep
in mind that when writing code in VHDL for an FPGA, the code will be translated into hardware as
opposed to writing code that will be flashed in memory of a microcontroller and then executed one
instruction at a time. This will be explained in the following paragraphs.

First of all the primary system clock on the Z-turn board is 100 MHz. This is very convenient because
its period is 10 ns and therefore it can track even relatively high frequency signals. So, let’s say one
would like to flash an LED with 100 milli-second frequency (100 ms). Let’s also assume that the duty
cycle is 50% so that the time the LED will be switched on will be the equal to the time the LED will be
switched off. Do the following:

100 ms
10 ns

10,000,000 is the number the 100 MHz clock has to count so that 100 ms pass.

= 10,000,000

So, assuming 50% duty cycle, create a variable within an process that counts up with every rising edge
of the primary clock. From 0 up to 5,000,000, the LED will be swtiched off while from 5,000,000 up to

Page 2 of 19

10,000,000, the LED will be switched on. When 10,000,000 is reached the counter is reset to zero and

the process will start all over.

The VHDL code for the above explanation is shown in code snippet 3.1 Note that the reset switch is
acitve low, this has to be according to how the reset switch is connected in hardware, otherwise the
counter will remain reset all the time and the LED will never light up, so be careful!

process(clk, reset)

44 variable count: integer;
begin
if reset = '0' then count :=

< elsif clk'event and clk = "1’

0;LEDs(2) <=
then count := count + 1;

VO!’-

48 if count < 5000000 then LEDs(2) <= '0';
4 elsif count >= 5000000 and count < 10000000 then LEDs(2) <= '1';
S end if;
51 if count >= 10000000 then count := 0; end if;
52 end if;

end process;

LEDs (1 downto 0)

<= "11"; --for now these two LEDs are switched off

Code Snippet 3. 1: Flashing LED in VHDL

Save the source code and Synthesize the code.

¢ Launch Runs X

Launch the selected synthesis or implementation runs

Launch directory. & <Default Launch Directory> v
Options
Launch runs on local host Number of jobs: 4 v
Generate scripts only
click OK

Don't show this dialog again

Iy}

Figure 3. 4: Launch synthesis

Now, create a block design to include the VHDL entity together with the Zynq processing system.

Lanyuays 1 sipass

¥ P Catalog

7 IP INTEGRATOR
Create Block Desian <:| (1)

7 SIMULATION

Run Simulation

7 RTLANALYSIS
> Open Elaborated Design

Qlx|e|+ & Q
~ = Design Sources (1
. | # Create Block Design

“h& PS_PL_project(Behavi
4 Constraints Please specify name of block design.
Hierarchy Libraries Compil ‘

name the block design
Source File Properties X Cloc Design name: lblockdesign (2) I
“ PS_PL_projectvhd Directory: @ <Local to Project> v
Specify source set: Design Sources v

General Properties
Tc nsole Message s Log o
Q x| 2=+

Figure 3. 5: Creating a block Design

Page 3 of 19

After the block design file is created, in the empty canvas, right click on the canvas and choose Add
Module from the list. This will access the VHDL entity that has been created previously and will be
made available in block-form to be added in the schematic. Figure 3.6 show the procedure:

BLOCK DESIGN - blockdesign

Sources | Design X Signals | Board T = 0 Diagram X PS_PL_projectvhd

Q= A & w O + E C

& blockdesign (2) Now right click on the canvas and select "Add Module"
(1) block design created

Source Node Properties..

b
Source File Properties T B X
@ PS_PL_projectvhd o
General = Properties

4+ AddIP.
Tcl Console Messages Log Reports Design Runs

Add Module...

Q /sl B B WO

IP Settings...

Figure 3. 6: Adding the VHDL entity in Block Design Schematic

| # Add Module X
Select a module to add to the block design
/ Figure 3. 7: The VHDL entity is available in the list
sotiaupes RO v The adjacent pop up window shows the VHDL entities that could
- be added in the schematic. Double Click on it.
¥h PS_PL_project (PS_PL_projectvhd) (1)
this window pops up. Select your entity by The entity shows up in block form in the canvas as shown in
double clicking on it and then click OK Figure 3.8 below
underneath) '
(2)
?) [Cancel
Diagram x PS_PL_project.vhd X
Q Q 1 & Q + ¥ C 9

Designer Assistance available. Run Connection Automation

a block diagram is
created that represents
the entity | have s
just created

PS_PL_project 0

clk

AR
e ERTLE LEDout[2:0]
A 4

PS PL project v1 0O

Figure 3. 8: VHDL entity in block form

Page 4 of 19

als Board ?2 00 Diagram PS_PL_project.vhd X
LY n
¢ Q Q o w 7 Q + E] Copy
- 7 Designer Assistance available. Run Connection Auto
ject v1_0:1.0
now we need to connect the output Q search..
of the entity to the external pins of PS PL _project 0 | "¢ SelectAl
the hardware wrapper. So right-click ‘ + AddIP..
on the pins and then select "Make o :RTL: ERTTIA
2. oo X reset = =
External™ v " Make External tri+

face

PS PL project v1 0

IP Settings...

M validats Nesinn

Figure 3. 9: Connecting the terminals to external pins

Figure 3.9 shows the procedure to define the pins as external pins so that later on they could be

connected to physical pins of the SoC.

(1)

Diagram project.vhd X 20
@ Q H ® O Q + ¥ C v

» Designer Assistance available. Run Connection Automation

¢ PS_PI

these are the
external pins created

PS_PL_project_0
Search: zyn q| (2) (1 match) :

LEDout2:0] LEDout_0[z
4F ZYNQ7 Processing System
ﬁ (3) click on this avio
< >
e click'on Run Block'Automation
Qe Q Q C

X O-P = 1
P Desioned Aspistance avatadle fun ocx Yotomaton Run Connecion Assmaton

B! Zna 1

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the leftto display its

configuration options on the right. [

Q = ¢

v/ All Automation (1 out of 1 selected)

Description

This option sets the board preset on the Processing System. All current properties will be
overwritten by the board preset. This action cannot be undone. Zynq7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces.

v 4 processing_system7_0

this window pops up,
leave everything as is

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box,
if you wish to retain previous configuration

Instance: /processing_system7_0

Options

Make Interface External: FIXED_IO, DDR

Apply Board Preset v
Cross Trigger In Disable v

click here
Cross Trigger Out Disable v

G v

Cancel

Now it is time to create an A9 hard-
processor so click on the plus (+) sign
and write “Zyng” in the field provided in
the pop up window. Then click on OK.

Figure 3. 10: Including the Zynq Processing
System in the Block Design

Figure 3. 11: Processing System is part of the
schematic

Click on Run Block Automation to
include the parameters and peripherals
of the Z-turn board.

Figure 3. 12: Leave all Pre-set Settings

Click on OK for the adjacent window
so that all the Z-turn board’s
peripherals will be included in the
Vivado project.

Page 5 of 19

Diagram x PS_PL_project.vhd x | Address Editor

Q @ 1 X Q + EC g T
* Designer Assistance available. Run Connection Automation
procesang_system? 0 {> DDR
oor + || {> FIXED 10
rozo_0 +||k PS_PL_project 0

|4 5.ax s#0_Fro TR

il 5 a0 w0 = I "
T ZYNO TTCO_WAVED_OUT
TTCO WAVEY OUT

TTCO WAVEZ OUT

N]
:-n §RTL§ LEDoU20] LEDout 0{20
-w J

The FIXED_IO pins are connected to the right peripherals automatically.
this is becuase we used the board files that we have included in the Vivado
SR s project. They are also assigned external pins of the SoC automatically again
the A9 processor is extended. according to the board files. However now we need to assign the
appropriate pins to the LEDs on the board for my hardware design block

5_AXI_HFD_ACLK

Figure 3. 13: Zynq Processing System co-exist with VHDL entity in Block Design

processing_system7_0

\ {> DOR
DOR + II—I [FIXED_IO
FIXED_IO + ||—l PS_PL_project 0
ne_o +|||)
USBIND_0 + ||| ck 2 - . ‘
H : :_ﬁ:_::g_FIFD_CTRL - M_AX_GRO et ERTLE LEDout:0] LEDout_0[2:0]
; M_A;(I_G_H)_.M:LK ZYNO TTCO_WAVEQ_OUT ‘ |
S_AX|_HPO_ACLK TTCO_WAVE1_OUT PS_PL_project vi_0
- TTCO_WAVEZ_CUT (1) connect the100MHz clock to the RTL design
FCLK_CLKO])
FCLK_CLK1 together with the reset signal.

FCLK_RESETO_N (2) make sure to provide a clock to the AXI inputs
ZYNQ7 Processing System as otherwise an error is generated during

implementation

Figure 3. 14: connect the 100 MHz clock

Connect the 100 MHz clock which is denoted as FCLK_CLKO on the Zynq Processing System diagram
to the VHDL entity’s clock input. Even though Figure 3.14 shows that the AXI_GPn inputs are
connected to FCLK_CLK1, it is advisable not to do so but to connect them also to the 100 MHz clock
FCLK_CLKO!

E r k & X ”’
— Source Node Properties...
BLOCK DESIGN - blockdesign = OpenFile !
|
Sources x Design | Signals ; I Create HDL Wrapper... I (2) | pL Figure 3. 15: Creating a Hardware
Q T &2 + 1 View Instantiation Template i\ Wrapper
q Generate Output Products... "
v [= Design Sources (2 Reset Outout Praduct To create a hardware wrapper,
. . eset Output Products.. . .
(1} > 4. blockdesign (blockdesign.t one needs to rlght—cllck on the
& PS_PL ject(Behaviory .
o PR projec 1 block design name and select
Hierarchy |P Sources Librarie Create Hardware Wrapper from
3 .
Source File Properties X Remove File from Project... the IISt.

4, blockdesign.bd

Page 6 of 19

¢ Create HDL Wrapper X

You can either add or copy the HDL wrapper file to the project. Use copy option if Leave Vivado to dO a” the WOI‘k

you would like to modify this file. [
This window pops up. Leave everything as is

Options

O Copy generated wrapper to allow user edits .
Click OK

® LetVivado manage wrapper and auto-update G

®

> B & X *

BLOCK DESIGN - blockdesign
Sources x Design Signals Board ?2 _0O0 Diagram x PS_PL_project.vhd p
Q = 2 + Updating © & Q@ Q 1 ™ Q
In Sources (2) Make Sure that the
ockdesign_wrapper(STRUCTURE) (blockdesign_wrapper.vhd) (1) uPdatmg IS ready befor
Io€ DI nrniartRahsvinrah (B Bl nrniact uhd) v| proceeding
< >

Hierarchy |P Sources Libraries Compile Order

Figure 3. 16: Leave Vivado to Update

Leave Vivado to update before continuing as otherwise Vivado will get mixed up!

Now click on Run Implementation.

. R . - - = Ew ua -
Generate Block Design
esign Sources (1) - P
W& blockdesign_wrapper(STRUCTURE) (blockdesion_wrapper
v SIMULATION gl e
nnctrainte
Run Simulation Synthesis is Qut-of-date X ‘
Fo_c
v RTL ANALYSIS Synthesis is out-of-date. OK to launch synthesis first? Implementation will automatically
Source File Proj start when synthesis completes. K
> Open Elaborated Design 19
& blockdesignl [T] pontshow this dialog again ~ Click Yes for this window
v SYNTHESIS <
P Run Synthesis General Pro E> Yes | Mo | | Cancel I "
> Open Synthesized Design
Tcl Console x Messages Log Reports Design Runs
v IMPLEMENTATION (lick here Q = = I B BE @
P Run Implementation (1) ' export_simulation -of_objects [get_files G:/Z-TURN_V12_20171030/Zyng7020/P5_PL/P5_PL.srcs/sourc
. make_wrapper -files [get_files G:/Z-TURN_V12_20171030/Zyng7020/PS_PL/PS_PL.srcs/sources_l/bd/bl
> OpenImplemented Design | add files -norecurse G:/Z-TURN V12 20171030/Zynq7020/PS PL/PS PL.srcs/sources 1/bd/blockdesign/

Figure 3. 17: Synthesis Out-of-date

For Figure 3.17, click Yes. This is because of the new changes that
synthesis.

have been done since the last

Page 7

of 19

¢ Launch Runs

Launch the selected synthesis orimplementation runs.

Launch directory. &) <Default Launch Directory=

Options
® | aunch runs on local host: Number of jobs: 4

Generate scripts only

Don't show this dialog again

<>

Implementation Completed

Cancel

o Implementation successfully completed.

Next

@ Open Implemented Design

Generate Bitstream

click Ok

View Reports

Don't show this dialoggligahg

Cancel

Click Yes for this window as well.

Figure 3. 18: Implementation Complete Window

Once implementation is done, it is time to
assign the physical pins to the VHDL entity
10 pins. These must be given according to
the Z-turn board pin configuration so that
the hardware will comply with the
software.

On the other hand, the pinouts for the
Zynqg Processing System are already
assigned by virtue of the Board Support
Files that has been installed as described in
chapter 1.

Now open the implemented design and click on the 10 Port tab as shown in Figure 3.19.

Tcl Console Messages Log Reports Design Runs | Timing Power DRC Package Pins liO Ports X ? -0
Q = = 7 + A
Name Direction Board PartPin Board Partinterface Neg Diff Pair Package Pin Fixed Bank /O Std
> '@ FIXED_IO_17426 (59 INOUT Vivado assigned these pins to my entity's v (Multiple) (Multiple)*
v 44 LEDout_0 (2 out external pins. 13 default (LVC
“d LEDout_0[2] out I need to change them to reflect where the |V10 v 13 default (LVC
‘0 LEDout_01] out LEDs are really connected on the board V6 v 13 | default (LVC
<J LEDout_0[0] ouTt W6 v 13 default (LVC
Scalar ports (0

Figure 3. 19: Vivado assigns random pin numbers to terminals

Vivado assigns random pin numbers to the terminals of the hardware. These have to be changed to
comply with the design of the Z-turn board.

Page 8 of 19

issages Log Reports Design Runs Timing Power Methodology DRC Package Pins IO Ports X ? 1

o+ H
Direction Board PartPin Board Partinterface Neg Diff F‘airl Package Pin Fixed Bank /O Std
INOUT Changed the pins according the Z-turn board. v (Multiple) | (Multiple)*
OUT Also we need to change the voltage from 1V8 4 34 | LvCMOS33*
OUT to 3V3 asshown R14 v | ¥ 34 |Lvcmosaar
ouTt Y16 v | ¥ 34 | LVCMOS33*
ouT Y17 v | ¥ 34 | LVCMOS33*

Figure 3. 20: Pins Comply with Z-turn Board

Now the pins are assigned the correct pin number so that the entity will be physically connected to
the LEDs on the Z-turn board.

Qa = = 4 + H

Name Direction Board Part Pin Board PartInterfface Neg Diff Pair Package Pin Fixed Bank IO Stc
& FIXED_IO_mio[5] INOUT AB v 500 LVCM
& FIXED_IO_mio[d] INOUT . . . B7 v 500 LvVCM
& FIXED_IO_mio3] INOUT this confirms that the A9 pins are D6 V 500 | LVCWM
@ FIXED_IO_mio[2] INOUT connected correctly because i know that B8 v 500 | LVCM
& FIXED_IO_miofl] INOUT one of the LEDs is connected to pin E6 AT v 500 | LVCM:
@ FIXED_IO_mio[0] INOUT I v 500 LVCM

Figure 3. 21: Confirming that MIO pins are correctly assigned

Figure 3.21 confirms that the Zynqg Processing System pins are correctly connected to the peripherals.
This could be confirmed from the schematic diagrams provided by MYIR.

I PS_PL- [G/Z-TURN_V12_20171030/Zynq7020/PS_PL/PS_PLxpr] - Vivado 201

lle Edt Flow Tools Window| Layout View Help Figure 3. 22: Saving the new constraints file

a W o« B ® ’, B R0 since pinouts have been changed from the

Save Constraints (Ctri+S) ! IMPLEMENTED DESIGN * -xc72(©Ne€S assigned by Vivado, a new constraints file

will be created and saved. This new

Sources Netist Devie constraints-file will be part of the project and

Open Block Design v . takes precedence over the one created
Q & = automatically by Vivado.

A

Create Block Design

Generate Block Design
v Internal VREF

v SIMULATION 0.6V

Out of Date Design X

o Saving the current constraints to the target project constraints file may cause your
synthesis and implementation to go out-of-date. To avoid re-running synthesis and
implementation, you can force the design up-to-date by selecting the run in the Design
Runs tab, right clicking, and selecting 'Force Up-to-Date’.

[C] Dont show this dialog again click Ok to this window G

Page 9 of 19

¢ Save Constraints X

Select a target file to write new unsaved constraints to.
Choosing an existing file will update that file with the new ‘

traints. .
constraints this window pops up.

® Create anewfile

Eile type: i XDC v

Filename: | name the constraint* file

File location: | & <Local to Project> v

<selectatargetfile> then click OK

=
&) F Cancel

Figure 3. 23: Naming the new constraints file

Click on Generate BitStream. If Any windows pop up because Synthesis or implementation are out
of date, just click on OK to re-do these stages again.

Bitstream Generation Completed X

o Bitstream Generation successfully completed.

Next
(®) view Reports
Open Hardware Manager

Generate Memory Configuration File

Don't show this dialog again G

Figure 3. 24: Bitstream Generated

Page 10 of 19

1 5ources

1 Saye Constrainig (1) File)lockdesign_wrapper(STR
Close ImplemenfedDesign e

archy IP Sources Libraries

|
ce File Properties x Clock Re

Open Checkpoint.

Write Checkpoint..

) ackdesign_wrapper.vhd
New IP Location..

Open IP Location }
aral Properties

New File.. :
onsole Messages Log
Open File - = = + | %
Open RecentFile o g
Open IP-XACT File (3) Export Hardware... D
IN
Open Interactive Report Export Constraints t
v IN
Export Pblocks n
|
Add Sources EwortiBISModel.. |
Open Source File Export /O Ports. |
£ Export Bitstream File
Import ’
(2) Export Simulation...
» S

Figure 3. 25: Export the Hardware
After the bitstream file is generated, it is time to export hardware, so click on File = Export >

Export Hardware.
¢ Export Hardware X

Export hardware platform for software ‘

dyeippmenttodls. 4 his window pops'up . .
(1) Tick the include bitstream box and then click OK

Include bitstream

Exportto: | & <Local roject= A

(2)

)

From the file menu, select Launch SDK. Now in the author’s 13-inch laptop, sometimes this option
is not seen on the screen so one might think that it is not included. Well it is at the very end of the
file menu so one needs to scroll with the arrow-down button just one place down and then hit
enter on the keyboard and the following window pops up as shown in Figure 3.26.

¢ Launch SDK X

Launch software development tool.

Exported location: | &3 <Local to Project= N

Workspace: b <Local tg Project=

&

v
o\

Figure 3. 26: Start SDK from within Vivado

Page 11 of 19

SDK will launch automatically and by default it will be pointing to the workspace where the Vivado

project is.

PS_PLsdk - C/C++ - blockdesign_wrapper_hw_platform_0/system.hdf - Xilinx SDK

File Edit Navigate Search Project Run
[nid | & vir v O vin

-

[Project Explorer

B&(¥Y V=8

Xilinx Window Help
BN 7) HEE A

- -

@ system.hdf =

v (& blockdesign_wrapper_hw_platform_0
2 blockdesign_wrapper.bit
[@ ps7_init_gpl.c
ps7_init_gpl.h
[& ps7_init.c
ps7_inith
@ ps7_inithtml
2 ps7_init.tc
'@ system_ hdf

Target FPGA Device:
Part:

Created With:
Created On:

blockdesign_wrapper_hw_platfo!

Design Information

72020
%c72020clg400-1
Vivado 2017.4

Fri Mar 23 20:39:17 201

Address Map for processor ps7_cortexa9_[(

this is the platform
project. It has all the
necessary files for the
hardware.

Opel
Opel

Cell
ps7_intc_dist 0
ps7_gpio_0
ps7_scutimer_0
ps/_slcr 0
ps7_scuwdt 0
ns7 12cachec 0

n File...

n Projects from File System...

Close
Close All

Save

Save As...

Save

Reve

Mov:

All
rt

(e

Rename...
Refresh

Base Addr High»
0xf8f010... 0xf8f
0xe000a... 0xe00
0xf8f006... 0xf8fC
0xf80000... 0xf801
0xf8f006... Oxf8fC
0xf8f020.. Oxf8fl

Alt+Shift+N >

Cirl+w
Ctrl+Shift+W

Ctrl+S

Ctrl+Shift+S

F2
F5

Figure 3. 27: SDK IDE

The hardware part of the project is
complete, and the files needed by SDK are
already loaded in SDK. At this point one
must create a new application project that
will generate the necessary files to boot
from the SD card. This application is called
the FSBL application and this is what
follows next.

_PLsdk - C/C++ - blockdesign_wrapper_hw_platform_0/system.hdf - Xilinx SDK
cﬁﬂ,)Navigate Search Project Run Xilinx Window Help

ew &3 (2)

Application Project @ (3)

SPM Project
Board Support Package
Project...

Source Folder
Folder

Source File
Header File

File from Template
Class

&
=
W
jwif
&
(]
5l
[W
=
@
4 Other... Ctrl+N

wiap- 1ot processur-psr_coresazu- 1]

Base Addr High Addr

Figure 3. 28: Creating a new FSBL project

Application Project

Create a managed make application project.

=

this window pops up

A
Project name: FSBLJ)rojecﬂ S I Name the pm'ect

Use default location

GAZ-TURN_V12_20171030\Zynq7020\PS_PL\PS_PLsdk\FSBL_project

default

QS Platform: standalone

Target Hardware

per_hw_platform 0 I

Hardware Platform: 'blockdesign wrap
IProcessor: ps7_cortexad 0
Target Software
Language: ®cOc++
32-bit
N/A &

Browse...

New...

the name of the BSP is
created automatically
while typing the name of
the project above

Board Support Package: (®) Create New | FSBL_project_bsp

Use existing

Hit NEXT underneath

Figure 3. 29: Name the FSBL project

Page 12 of 19

Templates &

Create one of the available templates to generate a fully-functioning application project.

Available Templates:

Dhrystone First Stage Bootloader (FSBL) for Zynq. The FSBL
Empty Application configures the FPGA with HW bit stream (if it
Hello World exists) and loads the Operating System (OS)
IwlIP Echo Server Image or Standalone (SA} Image or 2nd Stage
Memory Tests Boot Loader image from the non-volatile
OpenAMP echo-test memory (NAND/NOR/QSPI) to RAM (DDR) and
OpenAMP matrix multiplication Demo starts executing it. It supports multiple
OpenAMP RPC Demo partitions, and each partition can be a code
Peripheral Tests image or a bit stream.
RSA Authentication App
Zyng DRAM tests

A new window pops up. this time select Zynq FSBL as

shown above

Hit FINISH underneath

Figure 3. 30: Select the FSBL template

Peripheral Drivers

Drivers present in the Board Suppdfhileddie FSBL project is being created, click on the

< r—1 Console tab to see the progress
Overview Source|
(2! Problems ¥ Tasks & Console % [Properties ESDK Terminal ~ 5 EISDK Log %

Q: - := ﬂ E - - - - -
, . teElae-a B 22:10:37 INFO
CDT Build Console [FSBL_project_bsp] il
make -L ps/_COrtexay_u/llDsrc/Xilrsa_vli_4/src -s 1nciuae SHE o - -
"Running Make libs in ps7_cortexa9_e/libsrc/canps_v3_2/src" 22:10:46 INFO
make -C ps7_cortexa9_8/libsrc/canps_v3_2/src -s 1libs "SHELL=C 22:10:42 INFO
"Compiling canps" 22:10:42 INFO
|

Figure 3. 31: FSBL files are being generated

T3 == o/ 1Sinnnnian = o LUH e -
. e G w | mmrmmms mimim e smgmmmmi mip mmmmrem cimemmm = fm mmae s =
teElEEA&lnE - 22:18:37 INFO : Launching XSCT server: xsct.bat -interactiv
“sa VI 4/SrC -5 INCIUGE SHE 22:10:48 INFO : XSCT server has started successfully.
;_9715_55pc/canps_ﬁ_z/spc-- “ | 22:10:40 INFO : Successfully done setting XSCT server conne
»s_v3_2/src -s libs "SHELL=C 22:10:42 INFO : Successfully done setting SDK workspace

22:18:42 INFO : Processing command line option -hwspec G:/Z
Also take note of the wc(:rkspace
>
progress as shown here

‘ Building workspace: (14%)

Figure 3. 32: Notice the progress bar

Make sure to check the progress bar on the lower right of the screen. This is necessary to understand
when one should continue to open a new C project.

Page 13 of 19

¥ Problems ¥ Tasks & Console # [Properties & SDK Terminal
L oSBT B
CDT Build Console [FSBL_project]

22:24:49 Build Finished (took 11s.7@4ms) <j

g e s
ps7_init_gpl.c
ps7_init_gplh
@ ps7_init.c
ps7_inith
@ ps7_inithtml
2 ps7_init.tel
@ system.hdf

L8 FSBL_project

#: FSBL_project_bsp

A new project is created

Figure 3. 33: FSBL project is created

At this point it is very important to check whether the hardware part of the system is working
before trying the software part or the PS part. So create a boot image file from the FSBL project
and check that the programmable logic is working.

Now create a new C project where C code will control the Zyng Processing System. This is done by
clicking on File 2 New - Application Project then

Application Project @

Create a managed make application project.

P When this window pops
Project name: | My C project < I up you need to give the C
Use default location project a name
GAZ-TURN_V12_20171030\Zynq7020\PS_PL\PS_PL.sdk\My_C_project Browse...
default
OS Platform: standalone ~
Make sure that these

Target Hardware

are the settings

Hardware Platform: |blockdesign wrapper_hw_platform_0 ~ | New...

Processor: ps7_cortexa9 0 ~

Target Software .. .
This is created while | am
Language: @ C O C++

typing the name of the
TobR

project above
O

Board Support Package: (®) Create New ‘ My_C_project_bsp

O Use existing |FSBL_project_bsp
Hit NEXT underneath

Figure 3. 34: Naming the C project

Page 14 of 19

Dhrystone Let's say "Hello World" in C.

ey . R
EE_ This project template

is the only one that will

Memory Tests .
OpenAMP echo-test compile correctly so |
OpenAMP matrix multiplication Demo have to choose it by

OpenAMP RPC Demo §
Peripheral Tests orce.
RSA Authentication App Also to be able to use this

Zynq DRAM tests application, | have to
Zynq FSBL

make sure that | have
anyone of the UARTs of
my A9 core enabled,
otherwise this
application
project could not be
selected.

4L

T

@ < Back Next > Cancel

Figure 3. 35: Choosing the Hello World Template

Again, wait for SDK to finish compiling and building the workspace.

As stated before, at least one of the UARTs must be enabled for this C project to be available for the
user. It must be said that the UART that could be used for debugging is UART 1 and therefore one
needs to make sure that it is properly enabled from the C-project’s Board Support Package (BSP). The
following figures will illustrate the steps.

i Project Explorer BFES =0 Gy gys
roject explorer Y Refresh FS t.
v # blockdesign_wrapper_hw_platform_0 My glic
2 blockdesign_wrapper.bit ! Close Project
ps_init gplc Mc Close Unrelated Projects Dri
ps7_init_gplh -
o . . . ser
ps?_init.c Targ Build Configurations >
ps7_inith This L
?ps;_!n!:ltlml Han Run As > o
El ps/_InIt.Ic
I system hdf H DebuQ As 2
5 FSBL_project Ope Compare With >
& FSBL_project_bsp Boa e Sy S
D et e — sl nst
i right click on the C e . o
sl e . dl ¥ Board Support Package Settings
project BSP.
NS H\:‘IICIGLC‘ Dor SUUTL T, Bu
Team | Confiaure BSP settinas I

Figure 3. 36: Changing the board Support Files

When the changes are done, hit OK, then the whole project is re-built again automatically.

Page 15 of 19

Board Support Package Settings

Board Support Package Settings

Control various settings of your Board Support Package.

v Qverview
Configuration for OS: standalone
standalone (1)
v drivers Name Value Default Type

ps7_cortexad_0 hypervisor_guest false false boaolean
stdin ps7_uart_1 none peripheral
stdout ps7_uart_1 none peripheral
zyngmp_fsbl_bsp false false boolean
microblaze_exceptions false false boolean
er ve_pi false false boolean

Code Snippet 3. 2: Changing to UART 1

Locate the HelloWorld.c file:

W P>/ _unununn

This Board Suppc
= ps7_inittc
pslnitic Hardware Specific
I system hdf
£ FSBL_project
v (2 My_C_project

Target Proc

Operating Syster
Now | have to expanEFﬂJE—
oard Support Pe

Binaries C project and look for the |

) '[:m:;‘des hello-world C source file version:

= Debu . . P
e 9 and double click on it t®escription:

2 helloworld.c open it and edit/it

[platform_config.h Documentation:

l¢ platform.c

5 platform.h Peripheral Driver
Hlscriptld Drivers present in
= Xilinx.spec <

[My C project bsp v Overview Source

££ =0 Problems ¥ Tas

4 Target Connections &

Figure 3. 37: Locating Hello World File

Software for the Processing System

i

Description

Enable hypervisor gue
stdin peripheral
stdout peripheral
Disable or Enable Opi
Enable MicroBlaze Exc
Enable S/W Intrusive

Now it is time to write the software to flash the LED connected to MIO 0 and MIO 9 on the Z-turn
board. The user does not have to assign any pins in the constraints file because these form part of the

Board Support Files.

The first thing is to include the xgpiops.h file

<stdio.h>
"platform.h"
"xil_printf.h"
"xgpiops.h" |

#include
#include
#include
|#include

Code Snippet 3. 3: Include the xgpiops.h

Page 16 of 19

+int main()

{ int status;
XGpioPs_Config *ConfigPtr;
XGpioPs PS_GPIO;

init_platform();

/*Configuring Bank @ which is actually bank 58@ on Zyng SoC*/
ConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_@_DEVICE_ID);

status = XGpioPs_CfgInitialize(&PS_GPIO, ConfigPtr,ConfigPtr -> BaseAddr);

if(status != XST_SUCCESS)
{

printf("initialisation failure");
return XST_FAILURE;

Code Snippet 3. 4: Initializing the MIO port

/*set the port direction ® = input l=output*/
XGpioPs_SetDirection(&PS_GPIO, ©, ©xFFFFFFFF);

/*Enable the port © = pin disabled, 1=pin enabled*/
XGpioPs_SetOutputEnable(&PS_GPIO, ©, BXFFFFFFFF);

/*0On the Z-turn board the two LEDs assigned to the PS part of the Zyng 7
*are connected to MIO® and MIO9. In this program i used the Port-write

function instead of the pin-write function/

Code Snippet 3. 5: Setting the Port Direction and Enabling the Output Port

while(1)
{
debounce();
print("Hello World\n\r");

XGpioPs_Write(&PS_GPIO, ©, ©x00000201);//MIO8 and MIOZ

delay();
XGpioPs_Write(&PS_GPIO, ©,0x00000000);

delay();

¥
cleanup_platform();

return 9;

Code Snippet 3. 6: Switching on and off the LEDs + printing on Serial Port

All the above instructions are explained in chapter 2 and therefore it will not be repeated here.

“void delay (void)
for(unsigned long i = 8; i < 100000800; i++)

//do nothing

}
}
“void debounce (void)
{
for(unsigned long i = @; i < 100000000; i++)
//do nothing
}
}

Code Snippet 3. 7: Software Delays

The delays are used so that the LEDs could be seen blinking.

Page 17 of 19

Saving the C file will immediately start the build operation again. When this is finished one can create
the boot image file that will be saved in the SD card. This is show in figure 3.38.

5z system.hd Rename... F2 pt_pla
5 FSBL_project i

. Import... int("H
Export...
v & My_C_projec

s Build Project
3 Binaries
) Includes Clean Project
@ Debug Refresh F5
& src Close Project

My _C_projec Close Unrelated Projects

Build Configurations >

RunAs 1) right click on the C préjfct

Debug A >
U955 2) select "Create Boot Image”
Compare With >
Restore fi Local History...
4 Target Connecti Sl el R elsy & Tasks

& Hardware Se C/C++ Build Settings
& Linux TCF Ag B Generate Linker Script nsole [A
&= QEMU Tefed W Change Referenced BSP

Create Boot Image Build

Team >

Figure 3. 38: creating a boot image file

mie
Creates Zynq Boot Image in .bin format from given FSBL elf and partition files in specified output folder. i
Architecture: Zyng v
(® Create new BIF file () Import from existing BIF file
Basic Security
Output BIF file path: | G\Z-TURN_V12_20171030\Zynq7020\PS_PL\PS_PL.sdk\My_C_project\bootimage\My_C_project.bif | Browse...
UDF data: | | Browse...
[Isplit Output format: |BIN ~
Output path: | G\Z-TURN_V12_20171030\Zynq7020\PS_PL\PS_PL.sdk\My_C_project\bootimage\BOOT.bin | Browse...
This window pops up. It shows that SDK will create a .bif file and a boot.bin file.
Boot image partitions
File path Enarypt... Auther
(bootloader) GN\Z-TURN_V12_20171030\Zynq7020\PS_PL\PS_PL.sdk\FSBL_project\Debug\FSBL_project.elf none none Add
G:\Z-TURN_V12_20171030\ynq7020\PS_PL\PS_PL.sdk\blockdesign wrapper_hw_platform_O\blockdesign wrapper.bit none none
G:\Z-TURN_V12_20171030\Zynq7020\PS_PL\PS_PL.sdk\My_C_project\Debug\My_C_project.elf none none Dl
Take note of the project files and their sequence. first the First Sequence Boot Loader first Edit
then the .bit file from Vivado and the last file is the .elf file created by the C project
Up
Hit Create Image underneath
Figure 3. 39: Three files make up the boot image file
e o - || sy ass) | s
PY e m Paste shortcut .t;‘;e Ltzl DEI'E(E fename f::;‘gr Prnpver“es eHismry EF,III’\Ver'tselectimn
Cliphgard, Quoanize NP Qoen =ud
4 | » TisPC > NewVolume (G) > Z-TURN.V12.20171030 » Zyng7020 » PSPL > PSPLsdk > My Cproject » bootimage the location where the boot.bin file regjdes,
o - Malta ¢ ~ Name Date modified Type Size
o Persan ©) BoOT 23/03/2018 22:52 PowerlSO File 4,085 k8 I This is the boot.bin file
)) My_C_project 23/03/2018 22:52 PowerlSO File 1KB
ation Elect

Copy this boot.bin file and paste it on the SD card

s

Figure 3. 40: Location of the Boot image file

Page 18 of 19

Eject the SD card from the computer and insert it in the Z turn board. The program should start, there
will be the two green LEDs on MIO 0 and MIO 9 blinking together with the LEDs that are connected to
the Programmable Logic part. On the serial monitor, the Processing System will transmit the Hello
World message.

J— ' 'l — N a P

u

1 B! cqe - HyperTerminal
File Edit View Call Transfer Help

D& A DB

4 |Hello Yorld . . o
| |Hello World The software part is working. This is the
| |Hello World UART sending a sentence
Hello Yorld
3 |Hello Yorld

Page 19 of 19

Detecting the slide switches on the Z-turn Board from Programmable Logic

In this chapter, three out of the four DIP switches located on the Z-turn board will be used as
select inputs to a multiplexer (MUX). The MUX will light a combination of LEDs according to
the combination of the switches’ inputs.

This chapter will focus on the interface part of the switches with Programmable logic and
therefore the VHDL code is simple.

The process how to create a project together with how to include a VHDL source file has
already been illustrated in previous chapters, so this will not be covered here.

Code snippet 4.1 shows the VHDL code to implement a MUX in hardware. The LEDs and the
switches are both data busses.

y MUX is
t (sw_input : in STD_LOGIC VECTOR (2 downto 0);
LEDs : out STD_LOGIC VECTOR (2 downto 0));

LEDs <= "001" when sw_input = "001" else
"010" when sw_input = "010" else
"011" when sw_input = "011" else
"100" when sw_input = "100" else
"101" when sw_input = "101" else
"110" when sw_input = "110" else
"111" when sw_input = "111" else

"ZZZ";

Code Snipper 4. 1: VHDL Code of a simple MUX

Create a block Design: This has already been shown in previous chapters, so it will not be
repeated here. Make sure to include both the Zynqg Processing System and the VHDL module
(the MUX).

1) right-click on canvas

Figure 4. 1: Adding the VHDL module

— » DDR
— »AXE 1) Right click on the canvas

Q search 2) Choose Add Module from list
W SelectAl
— | 4 AddIP

-“ sw_ing 2) | Add Module » LED:
‘ IP Settings
[validate Design
Create Hierarchy

Create Comment

The adjacent window pops up. Select the VHDL

¢ Add Module X
Select a module to add to the block design. ‘ module Of the MUX' then CIICk on OK
Module type: RTL v . .
Click on Run Automation at the top of the canvas
Search: | Q- .
== and click on OK.
1) & MUX (MUXvhd) here you have all the
VHDL modules that you
created

You can add as many
instances as you like to
your design

/| Hide incompatible modules @2)

Create a hardware wrapper as shown in Figure 4.2.

@
dow Layout View Help Q
X >, B & T

Source Node Properties...

[OpenFile

! BLOCK DESIGN - block_design

| Create HDL Wrapper... | 2)

Sources x Design Signals EI View Instantiation Template hd
- | - Generate Output Products...
Q = & |+
v gig niock decion wrappor Reset Qutput Products... 1]
1) | ~ %[block_design_i: block_
> @i block_design(STRUC
<
Hierarchy |IP Sources Libraries
| X Remove File from Project...
Figure 4. 2: Creating a hardware wrapper for the block design
Save the design.
processing_system7_0
DOR 4|} [DDR
FXED_IO + |} [FIXED_IO
ic_o +|||
UsBIND_0 +|||
lll+ s_ax1_HPo_FiFo_cTRL i
il 4 S_AXI_HPO - M_AXI_GPO 4|2 X o
M_AXI_GP0O_ACLK ZYNQ TTCO_WAVED_OUT (= UX
TTCO_WAVE1_OUT = ‘
EEARCHERCACLK TTCO_WAVE2 OUT = = =
sw_input_0[2:0] = - swnpui20] SRTLE Leoszo LEDs_0[2:0]
FCLK_CLKO = =
FCLK_CLK1 f= '
FCLK_RESETO_N @= MUX_v1_0

ZYNQ7 Processing System

Figure 4. 3: The Full circuit diagram

Figure 4.2 shows the circuit diagram for this project. Note that FCL_CLKO is connected to
M_AXI_GPO_ACLK and S_AXI_HPO_ACLK. Note also that the MUX will be implemented in
combinational logic, therefore no clock signal is required.

Click on Run Implementation

> Upen elaporaea vesign
#, block_design.bd S

v SYNTHESIS <
P Run Synthesis General Properiies

Tcl Console X Messages Log Reports Des

Q = s Il B E W

VHDL Output written to : G:/Z-TURN_V12 201
make_wrapper: Time (s): cpu = 00:00:06 ; e
> Open Implemented Design + add_files -norecurse G:/Z-TURN_V12_2017103

mndare rnomnile nrder —filsasr anmresa 1

If there are no errors then when prompted to open the implemented design, click on OK.

Implementation Completed X ‘

o Implementation successfully completed.

Next
@ Open Implemented Design
Generate Bitstream

View Reports

Dontshow this dialog @

Figure 4. 4: Implementation Ready

Click on OK for the above window. Choose the I/0 Ports tab and click on the arrow (>) of both LEDs_0
and sw_inputs_0.

TclConsole | Messages | Log |Reports | DesignRuns | Timing | Power | DRC | PackagePins | WOPorts X |1)select [0 ports

Qs 4+ 4

Name Direction BoardPartPin Board PartInterface Neg Diff Pair Package Pin Fixed Bank
» g DDR_6075 (71 INOUT v 502
» g FIXED_IO_B075 (59 INOUT v (Multiple)
> @ LEDs_0(2 ouT (2) change the pinouts to the ones already connected on the Z-turn board 13
> B sw_input 03 IN 13

Scalar ports (0

Figure 4. 5:1/0 Tab

3

~ @ All ports (126

> @ DDR_6075 (7 INOUT v 502 (Multiple)*

> @ FIXED_IO_6075 (59 INOUT Vv (Multiple) (Multiple)*

v 4@ LEDs_0 (= out 7 34 LVCMOS33*
<@ LEDs_0[2) out R14 v 7 34 LVCMOS33*
<@ LEDs_0[1] ouT Y16 v 7 34 LVCMOS33*
<@ LEDs_0[0] out Y17 v ¢/ 34 LVCMOS33*

v B sw_input_0 (3 IN /| (Multiple) LVCMOS33*
@ sw_input_0[2] IN a5 v 7 35 LVCMOS33*
& sw_input_0[1] IN G14 v 7 35 LVCMOS33*
@ sw_input_0[0] IN T19 v |/ 34 LVCMOS33*
Scalar ports

Figure 4. 6: Pinouts of the system

To arrive at Figure 4.6, one has to do the changes illustrated step by step in Figures 4.7.

HSTL_II_18
HSTL_I_18
HSUL_12

- - LVCMOS12
nRuns | Timing | Power | DR Package s VOPorts > LVCMOS15 /)
LVCMOS18

LVCMOS25
3oard PartPin Board PartInterface Neg Diff Pair | Package Pin Fixed gjant? LVCMOS33 5 Vi
/ I
v 34

Power

1)pinouts changed Y16 v default (LVCMOS18)| I
default (LVCMOS18) Y
13 default (LVCMOS18) v

Y17 Vv

Figure 4. 7: Changing the operating voltage of the I0s and their pinouts

Figure 4.7 shows that the pinouts for the LEDs are changed to match the location of the LEDs
on the Z-turn board. Apart from that one must change the operating voltage for both LEDs
and switches to LVCMOS33. This will avoid errors later.

Since the constraints file was changed, Vivado asks to save the changes in a different
constraints file. Give a name to the new constraints file.

¢ Save Constraints X

Select a target file to write new unsaved constraints to
Choosing an existing file will update that file with the new ‘
constraints.

® Create a newfile

File type: i xDC v

File name: ||name the constraints file |

Filg location: = &) <Local to Project= v

<select atarget file>

leave everything as is Q
= and click OK
2) \ Cancel

Figure 4. 8: Name the new constraints file

Double click on generate bitstream so that the .bit file is created. When the bitstream is
created, one has to export the hardware including the bitstream file, then launch SDK.

YPTIH TG,

Open RecentFile . =
 synth_1 (active
Open IP-XACT File... { v impl_1
Qut-of-Context Module Runs

Add Sources.. from file menu: (2) Export Hardware... i
Open Source File... Export Block Design...

Export Bitstream File...
Export (1) » Export Simulation... |
Launcn SDK ~ (3) Ll

Figure 4. 9: Exporting the hardware and Launching SDK

Since the Zynq Processing System is not used in this project, there is no need to create a €
code project. All one must do after the .bitfile is generated, and the project is exported, is
create a FSBL project in SDK and create a boot image from the FSBL project. This is shown
in Figure 4.10.

7<é->|v v =7

& Project Explorer &]

v & block_design_wrapper_hw_platform_0 FSBL app bs
= block_design_wrapper.bit — —
9 ps7_init_gpl.c Modify this BSP
ps7_init_gplh
[@ ps7_init.c Target Informati
ps7_inith This Board Supp:
@ ps7_inithtml

= 07 inittcl Hardware Specifi
= ps7_init.tc

Target Pro
& system.hdf g

5 FSBL app right click on the FSBL application gperating Syste
™ FSBL app_bsp

then select create boot image Board Support P

Figure 4. 10: FSBL project

The steps to create a First Stage Boot Loader project has been described in chapter 1 so
there is no need to show how it is done here.

Debug As > After the Boot image file is created, it
Compare With > can be found in the project > SDK
BTargetcc estore from Local History.. - FSBL project Bootimage folder.
&= Hardw C/C++ Build Settings
& Linux~ ® Generate Linker Script

& QFEML_Change Referenced BSP

2 Create Boot Image

leam >

Configure >

Figure 4. 11: Create a Boot Image File

Using the DIP switches with the Processing System

In this chapter, the Processing System will monitor the state of the DIP switches which are connected
to the Programmable Logic part of the Zyng 7. According to the combination of the state of the
switches, the tri-colour RGB LEDs, which are also connected to the Programmable Logic will light to
indicate which of the switches is active. The RGB LEDs are connected to pins R14, Y16 and Y17 while
the switches are connected to J15, G14, T19 and R19. These were derived from the schematic diagram
of the Z-turn board.

The following stages have been discussed in previous chapters so they will not be included again
here.

1) Create a Vivado Project
2) DO NOT create a VHDL file
3) Click to create a block design
4) On the canvas click on the plus-sign (+) in the middle
5) Write Zyng in the field of the pop-up window then select the Zynq processing system from
the list available
6) Right-click somewhere on the canvas and left-click on add IP
7) Write AXI GPIO in the field provided in the pop-up window
8) Select the AXI GPIO from the selection list
9) Double-Left-click in the middle of one of the AXI GPIO blocks and the pop-up window in
Figure 5.1 pops up.
AXI GPIO (2.0) P
0 Documentation IP Location

Show disabled ports ComponentName axi_gpio_0

Board
Associate |P interface with board interface G
IP Interface Board Interface
GPIO rgb led v
GPIO2 sws 4bits =

Clear Board Parameters

j"’ 8 GPIO +|||
s_axi_aclk
GPI02 +|||

s_axi_aresetn

Figure 5. 1: Setup of AXI block

Figure 5.1 shows the AXI block named axi_gpio_0. This AXI block has two channels named GPIO and
GPIO2. Both channels are 32 bits wide.

The drop down menu shows that the AXI block can be connected to the external peripherals according
to the Z-turn board’s support files which the user must download and install in the Vivado path so that
Vivado would know which type of dev-board, one is using and therefore there are presets that could
be utilized. This was discussed in chapter 1.

Since the preset configurations are going to be kept, then GPIO and GPIO2 will consist of three outputs
and four inputs respectively.

Page 10f8

processing_system7_0

DOR + {2 DDR

FIXED_ 10 + {>> FIXED_IO
nc_o +
USBIND 0 +
|||+ s_axi_Heo_FiFo_cTRL M_AGPo & f | axi_gpio_0

i+ S_AXI_HPO -
; M_AX|_GPO_ACLK .{Y’[\JQ TTO0_WAVES_OLT

TTOO_WAVE1_OUT
- S_AXI_HPO_ACLK

2

= |ll—
b | S AXI “eio.lo_o{20) b {>> mgb_led
5_axi_ack - _‘" {2 sws_dbits

TTCO_WAVE2_OUT
FCLK_CLKO fLel_rasetn Cgaoz o_i{30] « D M—Jx“”ph
FCLK CLK1 |—4 e il o
FCLK_RESETO_N ©— AXI GPIO 7 L
——d ACLK
ZYNQT Processing System rst_ps7_0_50M ARESETN » ;
, \ p—= S00_ACLK T2 MOO_AX| o i md
siowest_sync_ck mb_reset S00_ARESETN .
ex_reset in bus_stuat_rese{0:0] L—— M00_ACLK
aux_reset_in perpheral_resetf0:0) MOO_ARESE TN
mb_debug_sys_rst nierconnect_aresstni0 0] .
dem_locked penpheral_aresetnj0:0] AX| Inter t

Processor Syslem Reset
Figure 5. 2: AXI block channels configured as input and output

As shown in Figure 5.2, the channels within the AXI GPIO block assume their directions whether they
are inputs or outputs automatically if the presets are used! note rgb_led and sws_4bits assigned to
the pins according to the Board Support files!

Whenever there is an AX/ block, one must include the AX! interconnect block together with the
Processor System Reset block. This will make life easier at a later stage when compiling the project. So
by right-clicking on the canvas and selecting the ADD [P for both cases, one will be able to include
these two blocks in the design. Make sure to reduce the number of Master interfaces of the ACI
interconnect block from 2 to 1 as shown in Figure 5.3.

AXI Interconnect (2.1) ¢

© Documentation IP Location

Component Name ps7_0_axi_periph

Top Level Settings ~ Slave Interfaces

Number of Slave Interfaces 1 v
Number of Master Interfaces ©
Interconnect Optimization Strategy Custom

Figure 5. 3: Reduce the number of Master Interfaces in the AXI Interconnect Block

It is very important to note that, the user is not restricted to what is available on the dev-board
bought! Because if “custom” is selected from the drop-down list, then it will become a free 32-bit
GPIO which can be connected to any external peripheral.

10) After setting up the AXI blocks, one needs to click on Run Auto-Connection button on the top
of the canvas. This will route all the blocks to interface the Zynq Processing System with the
AXI GPIO blocks.

Page 2 of 8

11) Now point the mouse to the pins of the AXI GPIO blocks and one by one, right-click and click
on “make external”.

12) Do not forget to create a hardware wrapper by right-clicking on the block design and select
“create hardware wrapper” from the list

13) After all the above is done, double-click on “Run implementation”.

14) When prompted to open the implementation design, click on OK because from the
implementation screen, one can designate the appropriate pin assignments according to the
schematics of the dev-board. However, this time, since only the presets of the board are used,
the pin assignments should be already correct. It is not a bad idea if one would double-check
that the pin assignments are correct!

15) At this point all that needs to be done is to generate the bitstream file.

16) After the bit stream is successfully generated, the project should be exported and the
bitstream included as shown in Figure 5.3.

17) Then SDK could be launched from within the project. The SDK should be resident to the project
itself so click on OK when prompted.

Save Block Design As..
Close Block Design

Open Checkpoint...

File menu:

processing_s

New IP Location...

Open IP Location

|li4 s_Ax1_weo_FFo_cTrL

) 4 s_axiweo 1
New File.. M_AXI_GRO_ACLK ZY
Open File S_AXI_HPO_ACLK
Open Recent File »
Open IP-XACT File...
Add Sources I Export Hardware... (2) I
Open Source File... Export Block Design..

Export Bitstream File...

Export (1) > I Export Simulation
Launch SDK (3) | L

Figure 5. 4: Export Hardware include the bitstream file

Once SDK is opened it will immediately open a project for the hardware created in Vivado. At this
point one needs to create a First Stage BootLoader Application from the file menu.

18) In SDK, create a FSBL application

19) Then create a hello-world application

20) Enable UART 1 from the Board Support Package of the Hello World code application by right
clicking on the hello-world application project then select change the referenced BSP

Points 18 to 20 have already been shown in previous chapters.

Page 3 of 8

Now the software part

The focus of this chapter is on this part because the previous parts should by now be familiar with the
learner. So first include the libraries for the AXI GPIO block. This is called gpio_v4_3 and could be found
in the path shown in Figure 5.5

v [¢_code_bsp A i
#include <stdio.h>

#include “"platform.h"
#include "xil_printf.h"

i BSP Documentation
¥ = psi_cortexa9_0

= code #include "xgpiops.h"
= include #include "xgpio.h"
e lib
v = libsrc void delay (void)
& canps_v3_2 for(unsigned long i =

= coresightps_dcc vi 4
(= cpu_cortexa9_v2_5

= ddrps_v1_0 ¥
= devcfg_v3_5

= dmaps_v2_3 int main()

= emacps_v3_6 {

& generic v2_0 int status, success@,:

& gpio_v4_3 these are the two XGpioPs PS—G?lo; ,
.) . XGpioPs_Config *PS_Gp:

e gpiops_v3_3 | [libraries needed XGpio PL_Gpiod;

& iicps_v3_5 In these libraries, one XGpio PL_Gpiol;

= gspips_v3_4 can find all the XGp}o_ConF}g :PL_Gp:!.ot

& scugic v3_8 functions to operate XGpio_Config *PL_Gpio(

= scutimer v2_1 the PS GPIO and the init_platform();

= scuwdt v2_1 AXI GPIO ™ <

Figure 5. 5: Path to find the AXI GPIO library

All the functions that control the AXI GPIO block are listed in the library shown in Figure 5.5 above. For
this project, the two LEDs connected to MIO 0 and MIO 9 will also be used. Incidentally these two LEDs
are connected to pins E6 and B5, however nothing should be done cause its already part of the
constraints file due to the board support files.

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"

#include "xgpiops.h" include these two
#include "xgpio.h"

header files

void delay (void)

{ . . . this is just a normal delay
for(unsigned long i = @; i < 10eeee0;i++)
{
}

}

The xgpiops.h header files are included in the C source file to have access to gpiops_v3_3 library or
the MIO port pins. The xgpio.h is included to have access to the Programmable Logic pins via the AXI
GPIO block.

When the processor enters the delay function, it till loop in the delay for 1 million times and then
returns to the main program. That way, the main program is slowed so the LEDs can be seen blinking.
Next initialize the MIO port and the AXI block as shown in the code on the next page.

Page 4 of 8

/*Initialise PS GPIO driver*/
/*XGpio_Config *XGpioPs_LookupConfig(ulé DevicelId);*/
ConfigPtr= XGpioPs_LookupConfig(XPAR_PS7_GPIO_@_DEVICE_ID);
status= XGpioPs_CfgInitialize(&myPSGpio, ConfigPtr,ConfigPtr->BaseAddr);
if (status != XST_SUCCESS)

{
print("cfg init err\n");
return XST_FAILURE;

}

Code Snippet 5. 1: Initializing the MIO port

The above function is found in xgpiops_sinit.c file. The argument ul6 Deviceld is found in xgpiops_g.c
file. The original function is the following:

XGpioPs_Config *XGpioPs_LookupConfig(ul6 Deviceld)

XGpioPs_Config is the return type of this function so this function must be equated to a pointer that
has the same attributes as XGpioPs_Config. This is done by declaring a pointer of the same type at the
beginning of the main () and equate that pointer to the above function. So, declare the variable:

XGpioPs_Config *ConfigPtr;
Then equate it to the function:

ConfigPtr= XGpioPs_LookupConfig(XPAR_PS7_GPIO_0_DEVICE_ID);

After the LookupConfig(), one has to initialize the port. This is done by
s32 XGpioPs_Cfglnitialize(XGpioPs *InstancePtr, XGpioPs_Config *ConfigPtr,u32 EffectiveAddr)

The above function returns a s32 value so one must declare a variable of type s32 at the beginning of
the main () and equate it to this function. This is done below:

s32 status;
XGpioPs *InstancePtr must also be declared at the beginning of the main (), like so:
XGpioPs myPSGpio;

XGpioPs_Config *ConfigPtr has to be replaced with ConfigPtr like before and for u32 EffectiveAddr,
one must write ConfigPtr -> BaseAddr. This was defined in xgpiops_hw.h file.

#define XGpioPs_lWriteReg(BaseAddr, RegOffset, Data) \
Xil_out32((BaseAddr) + (u32)(RegOffset), (u32)(Data))

The IF statement that follows will check whether the previous function has been successful. If not, the
program will stop there and nothing else happens.

Now to initialize the AXI GPIO block, the following function found in xgpio_sinit.c must be used.

int XGpio_lnitialize(XGpio * InstancePtr, ul6 Deviceld)

Page 5 0of 8

again, the above returns a variable or type int and therefore such a variable has to be declared at the
beginning of the main (). The XGpio * InstancePtr must be replaced with an instance pointer that must
be declared as well. This is shown in the following declarations:

XGpio myGpio;
And this should be written with an ampersand (&) sign in front of it.
int success;

The device ID should be copied from xgpio_g.c file. The complete statement is shown below:

/* Initialise the PL GPIO driver*/
/*int XGpio_Initialize(XGpio *InstancePtr, ulé Deviceld);*/
success=XGpio_Initialize(&myGpio,XPAR_AXI_GPIO_©_DEVICE_ID);

Just like for the initialization of the MIO port, one can use an IF statement to verify the success of the
initialization. Here it is not included; however it is a good idea that it will be done.
From xgpiops.c file, use

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

The above function does not expect a return variable, so it does not have to be equated. For the
instance pointer argument should be replaced with &myPSGpio, the u32 Pin should be replaced with
the pin number —in this case 0 since one of the LEDs is connected to bit O and the direction argument
should be filled with 1 because it defines an output while 0 defines an input.
/*Now we need to set the port direction of each pin in the PS GPIO*/
XGpioPs_SetDirectionPin(&myPSGpio,®,1); //MIO[8] set as output

XGpioPs_SetDirectionPin(&myPSGpio,9,1); // MIO[9] set as output
/*both MIO outputs above have an LED connected with them on the board*/

Now as an observation, even though the project works, however since the last argument is defined as
a 32-bit argument, one must write it in 32-bit form so it would be advisable to write the second
function for MIO 9 as follows:

XGpioPs_SetDirectionPin(&myPSGpio,9,0x00000200); // MIO[9] set as output
Or to be even safer one should use the bank function and not the individual pin function as follows:
void XGpioPs_SetDirection(XGpioPs *InstancePtr, u8 Bank, u32 Direction)

where XGpioPs *InstancePtr is replaced with &myPSGpio as before, the u8 Bank will be replaced
with 0 because it is bank 0 and u32 Direction will be replaced by 0x00000201

XGpioPs_SetDirection(&myPSGpio, 0, 0x00000201);
It is time to enable the outputs so from xgpiops.c file copy:
void XGpioPs_SetOutputEnablePin(XGpioPs *InstancePtr, u32 Pin, u32 OpEnable)

XGpioPs *InstancePtr is replaced with &myPSGpio, u32 Pin is replaced with 0 and 9 respectively in
different function calls, and u32 OpEnable is replaced with 1 declaring that the output is now enabled.

Page 6 of 8

/*for the MIO outputs to work, i need to enable them by */
XGpioPs_SetOutputEnablePin(&myPSGpio,0,1); //enable MIO[@] pin
XGpioPs_SetOutputEnablePin(&myPSGpio,9,1); //enable MIO[9] pin

Now for the AXI GPIO block, one only has to set the direction of the individual channels as a whole
and not individual pins. This is illustrated below:

/

/* Now i am going to set the direction of the PL GPIO*/
XGpio_SetDataDirection(&myGpio,2,@x8000e008F); //bits 3:@ are connected to switches
XGpio_SetDataDirection(&myGpio,1l,@x00000000);//RGB LEDs are connected to the
//lower 3 bits of this port

Code Snippet 5. 2: Setting the AXI GPIO direction
The function can be found in xgpio.c file.
void XGpio_SetDataDirection(XGpio *InstancePtr, unsigned Channel,u32 DirectionMask)

XGpio *InstancePtr is replaced with &myGPIO, channel argument is replaced with either 1 or 2. 1
represents GPIO channel while 2 represents GPIO2 channel. U32 DirectionMask determines the pin
direction — in the AXI GPIO case, logic 0 represents that pin is an output while logic 1 means that the
pin is an input. It is the reverse for the MIO port!

The code snippet 5.2 shows that channel 1 is declared as output while channel 2 is declared as input.

Now for the while (1) code. A while (1) statement defines an infinite loop. This means that the
microcontroller will continue looping inside this loop forever. The code must check the state of the
switch-bank and according to the state of each switch, it will light a combination of the RGB LEDs. To
check the state of the switches one must read the whole channel and filter out the un-needed bits.
This is called Bit-Masking where a bitwise-AND-function is done with individual bits of the channel. By
ANDing with 0 all the bits that are not of interest will be discarded while when ANDing with 1 — the
bits will be considered.

An if statement was used that selects the pattern of the LEDs according to the state of the switches.
The bank-read function was used to read the state of the bank as a whole shown below:
u32 XGpioPs_Read(XGpioPs *InstancePtr, u8 Bank)

it returns an unsigned 32-bit variable containing the state of the whole channel. Again XGpioPs
*InstancePtr is replaced by &myGPI0O while u8 Bank is replaced by the channel number, in this case 2
because that is where the switches are assigned. In the same statement the returned value from the
read function is immediately ANDed with another variable to extract the state of the switches. It must
be noted that, the switches are effectively connected to the least significant nibble of the channel.

The code lights the LEDs connected to the MIO port if the combination of the switches does not match
any from the if statements, otherwise the MIO LEDs will be switched off while the LEDs on the
Programmable Logic part will reflect the combinations of the switches’ inputs. Code is show in the
next page.

Page 7 of 8

while(1)
{
print(“"press a switch\n\r");
delay();
sw_detection = (XGpio_DiscreteRead(&myGpio,2) & ©x000@0eeF);//read channel 2 cause switch
//are connected to channel 2 bits 3:@
/* Switches are connected as active low switches */
if(sw_detection == ©xeeeeeeel)
{
XGpio_DiscreteWrite(&myGpio,1,0x@000000E); //LED will light with logic @
// XGpioPs_Write(&myPSGpio, ©,0xeeeeeeen); //switch off LEDs on PS bank ©

else if(sw_detection == ©x00000002)
{

XGpio_DiscreteWrite(&myGpio,1,0xeeeeeeeD); //LED will light with logic @
// XGpioPs_Write(&myPSGpio, ©,0xeeeeeeen); //switch off LEDs on PS bank ©

else if (sw_detection == ©xeeeeeee4d)

{
XGpio_DiscreteWrite(&myGpio,1,0xee0eeeeB); //LED will light with logic @
//XGpioPs_Write(&myPSGpio, ©,0x00000000); //switch off LEDs on PS bank @
}_
else
{

XGpio_DiscreteWrite(&myGpio,1,8x0@00000F); //switch off LEDs on PL side
// XGpioPs_Write(&myPSGpio, ©,0xeeeeeee9); //write in bank @ to affect MIO[9]
// and MIO[e]|
¥

Page 8 of 8

Interfacing with the Button Switch on the Z-turn board

The Z-turn board has 2 button switches. Both switches are active low. One of these button switches is
connected to the Reset pin of the Zynqg 7 while the second button switch is designated as USER button
and therefore one could use it in his projects.

The procedure to create a Vivado project, how to create a block design and how to include the Zynq
Processing System is already covered in previous chapters. Do not forget the create a hardware
wrapper before generating the bitstream file. Figure 6.1 shows a typical system.

processing_system7_0

DDR + ||} { DDR
FIXED_IO + ||| {O FIXED_IO
nc_o +||f
USBIND_0 + |||
|||+ s_axi_HPO_FIFO_CTRL "
4+ S_AXI_HPO - M_AX_GPO +
| M_AXI_GPO_ACLK ZYNQ TTCLWAVEDOUT 1=
* TTCO_WAVE1_OUT f= FPGApart_0
S_AXI_HPO_ACLK -
TTCO_WAVE2_OUT = ‘ V%
FCLK_CLKO dk £)
ERTL: ieoseq LEDs_0[2:0]
reset 0 FCLK_CLK1 = reset = =
FCLK_RESETO_N P wr)
/ FPGApart v

1.0

ZYNQ7 Processing System

Figure 6. 1: Hardware System

The block diagram shows a separate VHDL module created in the Programmable Logic. This module is
used to test whether the boot image file has been loaded in the Zynq 7 properly, so for this project,
the VHDL module could be removed. The reset switch of the VHDL module is not the same reset switch
mentioned in the introduction of this chapter.

Notice also that the button switch connected to MIO 50 is not seen in the diagram just like the LEDs
connected to MIO 0 and MIO 9. These are default in the constraints file generated by the Board
Support Files.

@ FIXED_IO_mio (54 INOUT v (Muliple) (Multiple)*
@ FIXED_IO_mio[53] INOUT c11 v 501 LVCMOS18
& FIXED_IO_mio[52] INOUT c10 v 501 LVCMOS18
& FIXED_IO_mio[51] INOUT B9 v 501 LVCMOS18
@ FIXED_IO_mio[50] INOUT B13 v 501 LVCMOS18
& FIXED_IO_mio[49] INOUT c12 v 501 LVCMOS18
& FIXED_IO_mio[48] INOUT B12 v 501 LVCMOS18
@ FIXED_IO_mio[47] INOUT B14 v 501 LVCMOS18
& FIXED_IO_mio[46] INOUT D16 v 501 LVCMOS18
@ FIXED_IO_mio[45] INOUT B15 v 501 LVCMOS18
& FIXED_IO_mio[44] INOUT F13 v 501 LVCMOS18

Figure 6. 2: Part of the constraints file

Figure 6.2 shows part of the constraints file. If the VHDL module was not included in project, all that
had to be done is just generate a bitstream file straight away, however since in this project, a VHDL
module was also included, a new constraints file was created to accommodate the changes in the
Programmable Logic part.

The USER button switch is connected to MIO 50. The pin is connected via a pull up resistor to 1V8. For
this particular project, leave the default voltage of 1V8 in the 10 settings in Vivado as shown in Figure

Page 10of 3

6.2. Generate a bitstream file, export the hardware including the bitstream file and Launch SDK from
within the Vivado project.

In the following section, the software part and its intricacies will be discussed.

The Software

In SDK, the usual FSBL application has to be created as part of the project. After that create a new C
project following the usual steps as described in previous chapters.

The gpiops_v3_3 library will be used in this project. Therefore, include the xgpiops.h file as usual.

Initialize the MIO bank as shown in the following code. Detailed explanation of this code has already
been covered in previous chapters.

PS_GpioConfigPtr = XGpioPs_LookupConfig(XPAR_PS7_GPIO_@_DEVICE_ID);

PSGpioStatus =XGpioPs_CfgInitialize(&PSGpio, PS_GpioConfigPtr,PS_GpioConfigPtr ->BaseAddr)
if(PSGpioStatus != XST_SUCCESS)

{

¥
XGpioPs_SetDirection(&PSGpio, @,@xFFFFFFFF); // 1= output @ = input
XGpioPs_SetOutputEnable(&PSGpio, ©,8xFFFFFFFF); //1 = enable

return XST_FAILURE;

Code Snippet 6. 1: Initializing the MIO bank

Even though MIO 50 is on bank 1, this does not mean that any changes to the device-ID has to be
made. It should remain the same XPAR_PS7_GPIO_0_DEVICE_ID.

Code snippet 6.1 also shows that all MIO pins have been enabled as outputs. This is convenient to
make sure that all the pins are enabled. However, it is advised to configure the pins needed as inputs
separately, by using the following function:

void XGpioPs_SetDirectionPin(XGpioPs *InstancePtr, u32 Pin, u32 Direction)

where XGpioPs *InstancePtr is replaced by the name of the instance in this case &PSGpio, u32 Pin
must be replaced with the pin number, in this case 50 (for MIO 50) and the direction should be set to
0 as it must be configured as input.

XGpioPs_SetDirectionPin(&PSGpio, 50, @); //this sets MIO 58 to input

The author tried using the function where all the bank is configured with one function using the
XGpioPs_SetDirection(&PSGpio, 1,0xFFFBFFFF); // only MIO 50 is set as input in bank 1
But for some reason, it did not work!

Now, since the focus of this chapter is to learn how to use the button switch on MIO 50, the C code
does a simple task to demonstrate its use. It waits for a button press then blinks both LEDs on MIO 0
and MIO 9 at the same time, once, then waits for another switch press.

To read from the port, the same concept must be adopted. Use the

u32 XGpioPs_ReadPin(XGpioPs *InstancePtr, u32 Pin)

Page 2 of 3

function. This function returns a u32 value. XGpioPs *InstancePtr should be declared as shown in
previous chapters while u32 Pin should be replaced with the pin number - in this case 50 because it is
connected to MIO 50.

sw_MIO5@ = XGpioPs_ReadPin(&PSgpio, 58);
if(sw_MIO5e != 1)

{

XGpioPs_WritePin(&PSgpio, ©, 1);
¥
else
{

XGpioPs_WritePin(&PSgpio, ©, 0);
¥

Code Snippet 6. 2: detecting the Button Switch

The return value of the read-pin function is stored in a variable of type u32. Since the switch is active
low, when the switch is idle (not pressed), the function returns a 1 because of the pull-up feature of
the circuit. Once the switch is pressed, it connects MIO 50 to ground and therefore the function
returns a 0. This is monitored by the IF statement. Note that the LEDs light when a logic 0 is at the
output of the pin.

Page 3 of 3

Authored by Joseph Attard

Processing System Dual AXI block control

In this chapter, two AXI GPIO blocks will be controlled from the Processing System.
This is the maximum number of AXI GPIO blocks one can use with the Processing
System because the xgpio_v4 4 library functions within SDK, only cater for two AXI
GPIO blocks. However, it must be said that each AXI GPIO block has a total of 64
I0s and therefore there is more than enough I0s with two AXI GPIO blocks!

In the meantime, one can use as many AXI GPIO blocks as the application needs,
with the Programmable Logic part of the Zynq 7. However, again this number is
limited with the number of physical IOs the Zynq 7 has, but in case of internal
connections, one can add as many AXI GPIO blocks as needed. The final circuit is
shown in Figure 7.1 below.

rst_ps7_0_50M

_sync_ck mb_resetm [buzzer
 reset_in

bus_struct_reset[0:0] e

N
Proc R L Al
——=fACLK
FIXED_IO
DOR
_system7_0 . axi_gpio_1 X ACLK |
por+ ||} J s axi i B A4 i
Th -4 crio4 |k ACLK i
£0_104 ||y _axi_ack M -
crioz+ |||) ARESETN
ey | — el
uuuuuu 04 —_—e———
earmurarmen li AXIGPO e
- M_AXI_GPO - | iy
e X TTCO_WAVEQ. ouv’ .
e ZYNQY e, emes
TTCO_WAVET_OUT= .
S_AXI_HPO_ACLK - 45_AXI Im : » rgb_led
TTCO_WAVEZ OUT = _ack GPo= i e sws_avits
FCLK_CLKO apo_o_BOI4 =
axi_aresetn
FCLK_CLK
FCLK_RESETD, AXIGPIO
Zh]

Figure 7. 1: final Block Design

The process to create a project and a block design has already been discussed in
previous chapters so these will not be mentioned here anymore. Also, when using
AXI GPIO blocks, one needs to include the AXI interconnect block and the Processor
Reset Block, both shown in Figure 7.1. Again, these have been explained in previous
chapters and therefore they will not be mentioned here.

One way to use two AXI GPIO blocks is to configure one of the AXI block to accept
inputs while the second AXI GPIO block can be configured to be all made up of
outputs. That way, one can have up to 64 inputs and up to 64 outputs! Do we need
more?!

In the project described in this chapter AXI_GPIO_O block’s channel 1, is connected
to the DIP switches and therefore from the 64 inputs, only 4 are used. On the other
hand, AXI_GPIO_1 is configured as output block. The two available channels within
the AXI block are used, channel 1 is connected to the onboard piezo buzzer while
channel 2 is connected to the LEDs. Both peripherals reside on the Programmable
Logic side. To implement these settings, one must go through the following steps:

1) Double Click on the AXI Block shown in Figure 7.2
2) For channel 1 within AXI_GPIO_O, click on the drop-down menu and select
sws_4bits as shown in Figure 7.3
3) Now double click again on AXI_GPIO_1 and select the LEDs and buzzer as
shown in Figure 7.4.
Page 1 0of 10

Authored by Joseph Attard

AXI GPIO (2.0)
o Documentation IP Location
Show disabled ports Component Name axi_gpio_0
Board IP Configuration
Associate IP interface with board interface
IP Interface Board Interface
GPIO Custom <
GPIO2 Custom [~]
Clear Board Parameters
Y4 s
s_ai_aclk GPI0 + |||
s_axi_aresetn
Figure 7. 2: Double Click on the AXI block
AXI GPIO (2.0) ‘
© Documentation IP Location
Show disabled ports Component Name axi_gpio_0
Board IP Configuration
Associate IP interface with board interface
IP Interface Board Interface
GPIO sws 4bits -
GPI02 Custom
buzzer
Clear Board Parameters rgb led
“l4 8_ma sws 4bits
s_axi_aclk GPI0 +|||
s_axi_aresetn
Figure 7. 3: Selecting the DIP switches
AXI GPIO (2.0) ‘
© Documentation IP Location
Show disabled ports Component Name axi_gpio_1
Board IP Configuration
Associate IP interface with board interface
IP Interface Board Interface
GPIO buzzer hd
GPI02 rgb led i
Clear Board Parameters
w4 s_ax
i M
ity GPI02 +|||
S_axi_aresetn

Figure 7. 4: Configuring the second AXI block

Page 2 of 10

Authored by Joseph Attard

The next thing is to assign an address to both the AXI GPIO blocks to be memory
mapped, shown in Figure 7.5 below:

BLOCK DESIGN - block_design

Address Editor

2l = €
Cell Slave Interface Base Name OffsetAddress Range High Address
S || v % processing_system7_0
a v [Data 4
. o A i Addresses
= axi_gpio_0 S_AXI Reg 0x4120_0000 64K ~ 0x4120_FFFF . d
assigned to
] = axi_gpio_1 S_AXI Reg 0x4121_0000 64K v 0x4121_FFFF g

the AXI blocks

HPO_DDR_LOWOCM

Board

Double Click on the
individual AXI block

Figure 7. 5: Assigning Addresses to the AXI blocks

The above is achieved if one right-clicks on the individual AXI GPIO block, and from
the menu select Assign Address. The addresses will be automatically given to the
respective AXI GPIO block. This step is also shown in one of the previous chapters.

Save the block design and create a Hardware Wrapper. Then synthesize the model.

Open the Synthesized design and check the assigned pinouts of the DIP switches,
the piezo buzzer and the LEDs. Due to the board support files, these should have the
right pin assignments.
Q £ & = o Q ¥om oo o
v Internal VREF

0.6V v

Drop l/O banks on voltages or the "NONE” folder to set/unset Internal ™
VREF. ~

Source File Properties X Clock Reg S ? -

% block_design.bd o

-3
< ?
General Properties

/O Ports

Q = £ @4 + A o
Name Direction Board PartPin Board PartInterface Neg Diff Pair Package Pin Fixed Bank /O Std
~ & All ports

we could see that the Piezo sounder has been assigned P18 corresponding to
v g buzzer_6075 out the actual pin allocated on the Zynq 7 SoC v 34 LVCMOS33*

~ | Scalar ports

“d buzzer_tri_o ouT buzzer_tri_o_0 P18 v v 34 LVCMOS33*
> o UDR_B075 TNOOT v 502 (Muliple

Figure 7. 6: Pin assignment of the Buzzer

Note that the working voltage is changed to 3V3 and the box under the column called
Fixed is ticked. Also note the name of the pinout, together with the assigned pin
number P18 which is taken from the Board Support Files and therefore nothing
should be changed from this tab. The above also holds true for the switches and the
LEDs. These are explained better in Figure 7.7 and Figure 7.8 on the next page.

Page 3 of 10

Authored by Joseph Attard

~ B sws_dbits_tri_j (4 IN v LVCMOS33*
- sws_dbits_tri_i[3] IN sws_dbits_tr. these are J15 v ¥ 35 LVCMOS33*
~ . i the pins note the
b sws_4bits_tri_i[2] IN sws_4bits_tr.. G14 v e 35 LVCMOS33*
connected to working voltage
¥ sws_4bits_tri_i[1] IN sws_4bits_{r... the DIP T19 v is8V3 34 | LVCMOS33*
- sws_4bits_tri_i[0] IN SWS_4Dbits_tr... switches R19 v v 34 LVCMOS33*

Figure 7. 7: Pins assigned to the DIP switches

~ 4@ rgb_led_tri_o (3 ouT v 34 LVCMOS33*
<@ rgb_led_tri_o[2) ouT rgb_led_ti_o.. here we can see the Y17 v |/ 34 LVCMOS33*
<@ rgb_led_tri_o[1) ouT rgb_led_tri_o.. O LEDs pinouts Y16 v 34 | LVCMOS33*
< rgb_led_tri_o[0] ouT rgb_led_tri_o... R14 N v 34 LVCMOS33*

SQralar narts

Figure 7. 8: Pinouts where the LEDs are connected

Note that the LEDs and the Buzzer cannot form part of the same channel within
the same AXI GPIO block because Vivado does not allow this to happen. So, to
accommodate both the RGB LEDs and the Buzzer, two channels within the same
AXI GPIO block must be used.

After saving to a new constraints file, it is time to generate a bitstream file, export
the hardware (including the bitstream) and launch SDK from within the project.

¢ Export Hardware X
This window pops up

Export hardware platform for software
development tools. !

(1) Tick here

Include bitstream

Exportto: &1 <Local to Project> v

(2) click OK

Figure 7. 9: Include the Bitstream File when exporting the hardware

Page 4 of 10

Authored by Joseph Attard

AXI_GPIOV4.sdk - C/C++ - block_design_wrapper_hw_platform_0/system.hdf - Xilinx SDK
File Edit Navigate Search Project Run Xilinx Window Help

il | & ~ i vyOviunnDEE Y v - -

EwlY =0

%5 Project Explorer @ system.hdf =

~ i block_design_wrapper_hw_platform_0 block design wrapper hw_platform 0 Har
= block_design_wrapper.bit
& ps7_init_gpl.c Design Information
ps7_init_gplh Target FPGA Device: 72020
[ps7_init.c Part: xc7z020clg400-1
ps7_inith Created With: Vivado 2017.4
@ ps7_inithtml Created On: Sun May 13 21:29:22 2018
B ps7_init.tcl
= system.hdf Address Map for processor ps7_cortexa9 [0-1]
SDK pops up and goes immediately to the Vivado Cell Base Addr High Addr Slave
project workspace. ps7_intc_dist_0 0xf8f010 Oxfa8fo1fff
Above one can see the hardware project included ps7_gpio_0 Oxe000a Oxe000afff
in SDK ps7_scutimer_0 0xf8f006 Oxf8f0061f

Figure 7. 10: SDK project linked to the Vivado project

Create a First Stage Boot Loader (FSBL) project, then create a C project from where
control of the AXI GPIO blocks will be done. This is what will be learnt new in this
chapter!

Again, choose the Hello World project from the list as shown in Figure 7.11.

Available Templates:

Dhrystone ‘ Let's say 'Hello World" in C.
aton
Hello World |

5 [Memory Tests

| |OpenAMP echo-test

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

Zyng DRAM tests

Zynqg FSBL

w

Click here

| iyl

"

@ < Back Next > Finish Cancel

Figure 7. 11: Choosing the Hello World project from list

Page 5 of 10

Authored by Joseph Attard

5 ESDKlog % Bk~

18:58:51 INFO : Launching XSCT server: xsct.bat -interactiv:
Jath 18:58:53 INFO : XSCT server has sts successfully.

18:58:54 INFO : Successfully dong SCT server conne
source | 18:58:54 INFO : Successfully done SDK workspace

18:58:54 INFO : Processing command liWe option -hwspec G:/Z

‘Building workspace: (9%) |

hE

CRLC 10-12

Us 17/05/2018

Figure 7. 12: Wait for SDK to finish compiling

Figure 7.12 is very important! One must wait for the SDK workspace to finish
building! This could be checked from the bottom-right-corner of the screen.

If the UART is needed by the C application, one must modify the Board Support
Package as shown in Figure 7.13.

E tem.nar (g
a}sys.em & Copy Ctrl+C t Processor: ps7_cor
¥ & C_project Paste Ctrl+V
Binaries % Delete Delete System
) Includes Source > Jort Package OS.
@ Debug Move... ame: standalone
v
BSD:Ch | Rename... F2 sion: 6.5
ellowar 1 Import tion: Standalone is a
E{Plat.for;di@k W exceptions as w
Hdﬂa tion: standalone_v6
Refresh F5
Close Project Drivers
Close Unrelated Projects ent in the Board Sup

[#: C_project_bsg
5 FSBL_project

axi apio 0 apio

~

Build Configurations

FSBL project. RunAs > lirce
Debug As >
& Target Connectic Compare With 5 Tasks & Consol
= Hardware Ser) rnings, 0 others
Restore from Local History... ~

= Linux TCF AgeC (2) ch thi
= QEMU TcfGdt W Board Support Package Settings I ZOSE 5 ('25 items)

Wi Re-generate BSP Sources

Team >

S .

Figure 7. 13: Opening the Board Support Package

Control various settings of your Board Support Package.
v Overview

standalone @ (Z?ggig&r%ﬂ?g 20 standalone

v drivers Name Value Default Type Description

ps7_cortexad_0 h i uest false false boolean Enable hype

=

(1) This window pops up

ps7_uart_1
ps/_uart_0
none

none peripheral stdin periphe

¥ none peripheral stdout perip

| bsp boolean Disable or Er

cept

boolean Enable Micrc

boolean Enable S/W |

(3) After you need to change from UART 0 to UART 1

Page 6 of 10

Authored by Joseph Attard

Figure 7. 14: Change to UART 1

Wait for SDK to compile the project.

The Software for this project

Open the Hello World.c file located in the src folder in the C project. Include the
xgpiops.h and xgpio.h header files using the #include “xxooococ.h” directive at the
beginning of the C file.

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "xgpiops.h"
#include "xgpio.h"

As shown in previous chapters, now open the gpio v4 3 folder. This contains the
library of functions that could be used with the AXI GPIO blocks. To use the MIO
port, one has to open the gpiops_v3_3 folder. Now from these two folders one can
extract or copy the functions to configure both the MIO bank and the AXI GPIO
blocks.

//initialise the PS GPIO

PS_GpioConfigPtr= XGpioPs_LookupConfig(XPAR_PS7_GPIO_@_DEVICE_ID);

status = XGpioPs_CfgInitialize(&PS_Gpio, PS_GpioConfigPtr,PS_GpioConfigPtr -> BaseAddr);
if(status != XST_SUCCESS)

{

¥

//set whether the PS port pins are to act as inputs or outputs 1 = output & = input
XGpioPs_SetDirection(&PS_Gpio,0,0x00000201); //MIO_© & MIO_9 are set as outputs
//enable the individual pins of the same bank

XGpioPs_SetOutputEnable(&PS_Gpio, ©, ©x00600201);

return XST_FAILURE;

Code Snippet 7. 1: Initializing the MIO Bank

//initialise the AXI GPIO @ block
PL_GpioConfigPtre = XGpio_LookupConfingPAR AXI GPIO_©_DEVICE IDj;
success® = XGpio_Initialize(&PL_Gpio@, XPAR_AXI_GPIO_©_DEVICE_ID);
if(success® != XST_SUCCESS)

{

}

//initialize the AXI GPIO 1 block
PL_GpioConfigPtrl = XGpio_LookupCon-Fig‘XPAR AXI _GPIO 1 DEVICE IDI;
successl = XGpio_Initialize(&PL_Gpiol,XPAR_AXI_GPIO_1 DEVICE_ID);
if(successl != XST_SUCCESS)

{

}

//In this application we need both channels of AXI GPIOl1 to be set as outputs
XGpio_SetDataDirection(&PL_Gpiol6)(89666686); //piezo connected with channel 1 of AXI 1

XGpio_SetDataDirection(&PL_Gpiol, [2|@x@@@eeeee);//LEDs are connected to channel 2 of AXI 1

return XST_FAILURE;

return XST_FAILURE;

//In this application we have a separate AXI block for the inputs. Only channel 1 is used
XGpio_SetDataDirection(&PL_Gpio®, 1,8x@08eeeeF);//switches are connected to channel 1 of AXI @

Page 7 of 10

Authored by Joseph Attard

Code Snippet 7. 2: Initializing the two AXI blocks

Looking at Code Snippet 7.2, one should notice that there are two instances of AXI
GPIO. These are named as PL_GpioO and PL_Gpiol. These are the names of the AXI
GPIO blocks!

Within AXI_GPIO1 block, two channels are used. These are named as channel 1 and
channel 2. Two different channels were needed, one to drive the piezo buzzer while
the second channel was used to drive the RGB LEDs. This is because the Board
Support information was used in this project. A workaround to be more efficient with
the IO pins, is to change the channel to custom when configuring the AXI GPIO block
within Vivado, opt for 4 outputs and these should be enough to control each LED and
the buzzer. However, in this project, the main focus is to show how to control two
AXI GPIO blocks from the Processing System.

All the variables and pointers used in above functions must be declared at the
beginning of the main () as shown in Code Snippet 7.3.

int status, success®,successl,sw_positions;

XGpioPs PS_Gpio; // PS GPIO pointer pointing to the bank where the IOs are
XGpioPs_Config *PS_GpioConfigPtr; //this is the configuration pointer for the PS GPIO
XGpio PL_Gpio@;//this is the first AXI GPIO @ pointer

XGpio PL_Gpiol;//this the second pointer for AXI GPIO 1

XGpio_Config *PL_GpioConfigPtre; //these are the configuration pointers for
XGpio_Config *PL_GpioConfigPtrl; //both FPGA AXI blocks

Code Snippet 7. 3: Declaring the pointers and variables

while(1)
{

print(“check switches\n\r");

//read the position of the switches and mask
sw_positions = (XGpio_DiscreteRead(&PL_Gpio®, 1) & ©x©000000F);

switch(sw_positions)
{
case ©x00ee0000:
XGpio_DiscreteWrite(&PL_Gpiol, 1, oxeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©x8@0EeeeF); //switch off PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©@xeeeee2el);//MIO_© & MIO_9 are off
break;
case Ox0eeeeeel:
XGpio_DiscretelWrite(&PL_Gpiol, 1, ©xeeeeeeel); //switch on piezo
XGpio_DiscretelWrite(&PL_Gpiol, 2, ©x@eeeeeer); //switch off PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeee2e1);//MIO_© & MIO_9 are off
break;
case ©x0eeeeee2:
XGpio_DiscreteWrite(&PL_Gpiol, 1, @xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, exeeeeeeel); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeee2e1);//MIO_© & MIO_9 are off
break;

Page 8 of 10

Authored by Joseph Attard

case ©x00000003:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeees); //switch off piezo
XGpio_DiscretelWrite(&PL_Gpiol, 2, ©xeeeeeee); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeee2e1);//MI0_© & MIO_9 are off
break;

case 0x0000e004:
XGpio_DiscretelWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeee3); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeee2e1);//MI0_© & MIO_9 are off
break;

case ©x00000005:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeee4); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeeez2el);//MIO_e & MIO_9 are off
break;

case ©x00000006:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeese); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeees); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeee2el);//MIO_6 & MIO_9 are off
break;

case ©x0eeeeee7:
XGpio_DiscreteWrite(&PL_Gpiol, 1, exeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeee6); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeee2el);//MIO_© & MIO_9 are off
break;
case Ox02000ees:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeee7); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeee2ee);//MIO_8 on only
break;
case Ox0e0eeee9:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscretelWrite(&PL_Gpiol, 2, ©xeeeeeee7); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeeeeel);//MIO_9 on only
break;
case OXO20e08eA:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeel); //switch on piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeeee); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeeez2ee);//MIO_© on only
break;
case ©x0000000B:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscretelWrite(&PL_Gpiol, 2, ©x08RGBBRE); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, exeeeeeeel);//MIO_© and MIO_9 on only
break;

Page 9 of 10

Authored by Joseph Attard

case ©OxeeeeeeecC:
XGpio_DiscreteWrite(&PL_Gpiol, 1, @xeeeeeeel); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, ©xeeeeeeeE); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, @, exeeeee2ee);//MIO_® and MIO_9 on only
break;

case OxeeeeeeeD:
XGpio_DiscreteWrite(&PL_Gpiol, 1, @xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, @xeeeeeeecC); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, @, exeeeeeeel);//MIO_® and MIO_9 on only
break;

case OxO0P0BeoE:
XGpio_DiscreteWrite(&PL_Gpiol, 1, exeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, @xeeeeeee3); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©x0eeee208);//MIO_6 and MIO_9 on only
break;

case OxO000eeoF:
XGpio_DiscreteWrite(&PL_Gpiol, 1, ©xeeeeeeee); //switch off piezo
XGpio_DiscreteWrite(&PL_Gpiol, 2, exeeeeeeee); //switch on PL LEDs
XGpioPs_Write(&PS_Gpio, ©, ©xeeeeeeee);//MIO_© and MIO_9 on only
break;

Code Snippet 7. 4: Main Code

Code Snippet 7.4 detects the positions of the 4 DIP switches and according to their
relative positions, a combination of RGB LEDs and the on-board buzzer are used to
determine how the DIP switches are placed. A switch-case statement is used this
time because it is more efficient than the if-else statement for this application.

All that is needed now is to save the .C file and this will start compilation. If no errors
are found, then create a Boot image file, copy it to SD card, transfer the SD card to
the Z-turn board. Power the Z-turn board, and change the DIP switches’ positions
repeatedly and notice the combination of the RGB LEDs together with the Buzzer.
Enjoy!

Page 10 of 10

Chapter 8 | Joseph Attard

XADC - The Analogue to Digital Converter Block within the 7 Series FPGAs
and the Zynq 7

ADC stands for Analogue to Digital Conversion. This means that an analogue voltage
is sampled, and this analogue voltage is represented by a decimal number. The
decimal number is not infinite because it is restricted by the number of bits. Most
common microcontrollers have 10-bit ADC peripherals however the Zynq 7 has a 12
-bit ADC and therefore the input voltage can be represented by a decimal number
from O to 4095. The recommended reference voltage by Xilinx for the analogue inputs
is 1.25V, however on the Z-turn board, the external reference voltage XADC_VCC is
1.8V obtained via an inductor which suppresses further any noise on XADC_VCC
supply rail. Strictly speaking, this means that the analogue signal applied to any one
of the analogue inputs should not exceed 1.8V! However, it is recommended by the
author, not to exceed the analogue input voltage by more than 1V.

The Zynq 7 SoC has internal parameters that could be sampled via the internal
XADC. These might need to be monitored if the Zynq 7 is part of a critical system to
make sure that the Zynq 7 is operating within its parameters. These internal
parameters include but is not limited to die-temperature, Auxiliary Vcc which is the
reference voltage for the auxiliary XADC channels, etc, etc. One can check Xilinx
UG480 for more information on this. Therefore, as a first XADC project, it would be
ideal to check these internal parameters, and in subsequent projects, one will
endeavour to explain more complex projects using XADC block.

Apart from checking the internal parameters, the Zynq 7 has one 12-bit channel
which is able to sample at an impressive rate of 1 Mega Sample Per Second (1MSPS).
This is called Vp_0/Vn_0O in the Xilinx literature such as the UG480, however in the
Z-turn board’s cape 10 schematic, these are marked as XADC_INPO and XADC_INN
respectively. Using the board support files, one does not have to worry about the
pinouts because they will be automatically assigned by Vivado, however one has to
be careful when reading the schematics by MYIR because they are a bit confusing!
In fact as a reference point, one should check the orientation of the 1.8V from the
header pins and also the 3V3 header pin. This check will help to determine the
orientation of Vp_0 / Vn_O relative to the schematics offered by MYIR.

One other thing that might confuse novices is that Vp and Vn are referred to as two
separate channels. This depends on how one sees it, because if the a differential
voltage is applied between Vp and Vn, then one might still regard it as a single
channel. On the other hand, most of the analogue voltages such as those from
analogue sensors are referenced to ground (0V) and therefore Vn must be connected
directly to analogue OV of the signal which might also be the same ground of the
digital system....and again the channel would be regarded as single as well!

Apart from this dedicated external 1MSPS channel, the Zynq 7 has another 16
analogue to digital channels referred to as auxiliary channels. In UG480, these are
named as VAUXP[O] and VAUXN][O] for channel 0, VAUXP[1] / VAUXN]1] for channel
1, etc. The analogue pins are shared with digital pins and therefore these particular
pins are multi-functional. They are also differential type and therefore one can apply
two separate voltages on AuxVp_n / AuxVn_n, and the internal op-amp will do the
subtraction between the input voltages. The second n (highlighted in italic-bold)
present the number of the auxiliary analogue input pair. These channels sample at
a maximum rate of 250 kilo-Samples per Second, and they are four times slower

Page 1 of 15

Chapter 8 | Joseph Attard

than the dedicated ADC input. Having said that, it still has a relatively high sampling
rate. From Chapter 9 onwards, this book will discuss the external analogue channels
in more detail, but for now let’s move on to see how to sample the internal parameters
of the Zynq 7.

Sampling Zynq 7 internal parameters

In this project, the internal parameters of the Zynq 7 are sampled and read from the
Processing System. These are then output on LEDs to validate the system’s operation
by making sure that the digital result is changing with every change in the input
analogue voltage. For this test, the dev-board designed by the author was used on
top of the Cape IO board by MYIR. This dev-baord was created to compliment the Z-
turn board. It has two 10KQ preset-potentiometers and two SkQ preset-pots, together
with four more DIP switches, four push-to-make switches, a single seven-segment
display and a set of 18 SMT LEDs. All of these components are completely isolated
from the Zynq 7.

As always, start by creating a new Vivado project. For this project there is no need
to create a VHDL file and therefore skip those steps. When Vivado IDE is opened on
the project, one can create a block design and add the Zynq Processing System. Since
the system is going to output the decimal equivalent of the analogue input signal on
LEDs, one can include the AXI interconnect block and AXI GPIO block as part of the
schematics.

A SRS 2 L s T [> [I = -~ |

/* Designer Assistance available. Run Block Automation

axi_interconnect_0

Connected only the clocks and reset [+)
i £ S00_AXI
processing_system7_0 signals 18
— — \ ACLK
DDR + ||| ARESETN
= FIXED_IO + ||| S00_ACLK el
M_AXI_GP0_ACLK ZYNQ M_AXI_GPO + }i = S00_ARESETN :i:
§ : MO1_AXI + fi
FCLK_CLKO MO00_ACLK e
FCLK_RESETO_N MO0 ARESETN
Y NOTIE e / We will remove these because we = MO1 ACLK
£YNQZ Processing Sysler want a single channel — MO1 ARESETN

AXI Interconnect

Figure 8. 1: configure the AXI interconnect block

The AXI interconnect block is configured to accept two AXI slave blocks (even though
they are called MO1...see Figure 8.1), in this project only one is needed so double
click on the AXI interconnect block and the configuration window pops up shown in
Figure 8.2.

Page 2 of 15

© Documentation IP Location

Component Name axi_interconnect_0

Top Level Settings Slave Interfaces Master Interfaces

Number of Slave Interfaces

1 v
Number of Master Interfaces 2 v
Interconnect Optimization Strategy Custom v

(2)

<j change thisto 1

AXI Interconnect includes IP Integrator automatic converter insertion and configuration.

‘When the endpoint IPs attached to the interfaces of the AXI Interconnect differ
in width, clock or protocol, a converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP integrator's parameter propagation automatically

configures the converter to match the design.
To see which conversion IPs have been inserted, use the IP integrator

expand hierarchy buttons to explore inside the AXI Interconnect hierarhcy.

NOTE:Addressing information for AXI Interconnect is specified in the IP Integrator address editor.

Figure 8. 2: AXI interconnect config window

Chapter 8 | Joseph Attard

(1) Double click on the
block

Change the number of Master interfaces to 1 and leave the page as it is. Click on OK.

This is how the diagram looks like now:

Desi Accict: ok

g Run Block Automation

processing_system7_0

DOR + |||
FIXED_IO + |||

axi_interconnect_0

ACLK

M_AXI_GP0O_ACLK ZYNQ‘

M_AXI_GPO + [ii
FCLK_CLKO

FCLK_RESETO_N F—<

ZYNQ7 Processing System

Figure 8. 3 Zynq 7 connected to AXl interconnect

then include the XADC block:

Search: O~ XADC|

4F XADC Wizard

(1 match)

+ S00_AXI

ARESETN
S00_ACLK
S00_ARESETN
MOO_ACLK
MOO_ARESETN

L

MOO_AXI + [ii

AXI Interconnect

Page 3 of 15

Figure
XADC

b s s It

e xe

ooR +||
= Fixep 1o +||
M_AXI_GPO_ACLK ZYNO M_AXI_GPO - [

FCLK QKo
FCLK_RESETO_ N

ZYNQ7 Processing Bystem

processing_system?_0

Figure 8. 5: blocks in the block design can be moved

Chapter 8 |

TT

Joseph Attard

8. 4: Adding the
block

Figure 8.5 shows that blocks can be moved even though with some restrictions. One
can left click on the object block and hover the mouse over the canvas for the object
block to move along with the mouse.

{D FIXED_IO

+ S_AXI_HPO_FIFO_CTRL
|4 s_Axi_nPo
M_AXI_GPO_ACLK
S_AXI_HPO_ACLK

ZYNQ™

008 +|l—
FIXED_IO o ||t

nco +|||

USBIND_ 0 |||
M_AXI_GPO 4 i

TTCO_WAVEQ_OUT

TTCO_WAVE1_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_CLK1
FCLK_RESETO_N

ZYNQ?7 Processing System

processing_system7_0

ax_interconnect_0

MOO_ARESETN

AXI Interconnect

Figure 8. 6: connect the resets

* Designer Assistance available. Run Block Automation Run Connection Automation

connect here

2O

M_AXI_GPO_ACLK Z Y N O‘

FCLK_RESETO_N

M_AXI_GPO - [l

DOR + ||

+]
i+ s00_Axi

axi_interconnect_0

ACLK

Fixen 10 + ||

ARESETN

FCLK_CLKO

ZYNQ7T Processing System

S00_ACLK
500_ARESETN

2 M00_AXI

xadc_wiz_0

D DDR

+ s_ax_ite

+ Vp_Vn
s_ax_aclk

ip2inic_ipt
user_lemp_alarm_out
vecint_alarm_out
vecaux_alarm_out
vecpint_alarm_out
vecpaux_alarm_out
veeddro_alarm_out
ot_out

s_ax_aresein

channel_outf4:0]
eoc_out
alarm_out
eos_out
busy_out

XADC Wizard

MOO_ACLK
MOO_ARESETN

AX| Interconnect

Figure 8. 7: Connect the data bus 1

xadc_wiz

Connect the reset pins of all the blocks together. A better solution is to use the
Processing System Reset block as shown in previous chapters.

0

p2nic_ipt

user_lemp_alarm_oul
vcont_alarm_out
vecaux_alarm_out

vecpint_alanm_out

A4 s axi_me

+ Vp_vn vecpaux_alarm_out
- vcoddro_alarm_out
8_axi_achk s

S_axi_aresein -
channel_ouf40]
eoc_oul
alarm_out
eos_oul
busy_out

XADC Wizard

Figure 8.7 show how the data from the Processing System is connected to the AXI
interconnect block.

Page 4 of 15

processing_system7_0

M_AXI_GPO_ACLK ZYNQ‘.‘

FCLK_RESETO_ N P—4

DOR +]||

Fixen 10 +|||

conn
axi_interconnect_0

M_AXI_GPO 4 [

FCLK_CLKO

ZYNQT Processing System

Chapter 8 | Joseph Attard

xadc_wiz_0

p2nic_ipt

ect here user_temp_alarm_out

Figure 8.8 shows how the interconnect block is connected to the XADC block.

* Designer Assistance available. Run Block Automation

processing_system7_0

vcont_alarm_out
ii+ 200 AXI vecaux_alarm_out
o 5 md me vogpant_alarm_out
ARESETN | [[[4 ve_vn "“m—“:m' —:
$00_ACLK 35 MOO_AXI - e o o ek Nl o

- S00_ARESETN 5_axi_aresein N
D0, ACLIC channel_oufi40|
M0O_ARESETN I
alarm_out
AX| Interconnect eos_out
busy_out

\
XADC Wizard
Figure 8. 8: Connect data bus 2
Connect the clock signals to the 100MHz output xadc_wiz_0
p2nk_ipt

M_AXI_GPO_ACLK ZYNO‘

FOLK_RESETO_ N ©—4

M_AXI_GPO 4 i

e+ S00_AXI

axi_interconnect_0

ACLK

00R +||
Fixen_io +|||

user_temp_alanm_out
vcont_alarm_out
vCCaux_alarm_out
veopint_alarm_out

FCLK_CLKO

ZYNQT Processing System

* Designer Assistance available. Run Block Automation <:|

processing_system7_0

+ s_axi_Me
ARESETN J [[[4 vo_vn 'W-ﬁ-::
S00 ACLK 325 MOO_AXI i o ai_sck Veeddro_a o
- S00_ ARESETN 9_axi_aresein N
MOO ACLK channel_ouf{4:0]
MOO_ARESETN L
alam_out
AXI Interconnect foa_out
busy_out
\
XADC Wizard
Figure 8. 9: Connecting the 100 MHz clock
we click on Run Block Automation to make sure that the
processing system takes the presets of the Z-turn board
xadc_wiz_0
P
p2nc_impt

M_AXI_GPO_ACLK ZYNO‘

FCLK_RESETO_ N O-—4

M_AXI_GPO + |2

DOR + |||

e [S00_AX

axi_interconnect_0

FIXED 10 + ||

user_temp_alarm_out

FCLK_CLKO

ZYNQT Processing System

veont_alarm_out

vecaw:_alarm_out

Ll + 5 _axi_Me Vet _atanm_out

oy || eyt
SO0 ACLK 2 MOO_AXI + i o_axi_ack alaan.

| . 9_axi_aregein of_out

MO0_ACLK channel_ou4:0]

MOO_ARESETN eoc_out

alarm_out

AX| Interconnect eos_oul

busy_out

Figure 8. 10: Run Block Automation

XADC Wizard

Click on Run Connection Automation so that the Zynq Processing System takes the
pre-set configuration assigned in the Board Support Files.

Page 5 of 15

Chapter 8 | Joseph Attard

Di

Sources

Design

Signals

Board
PP e

let Properties

a Q

agram

L%

processing_system7_0

™

AXI_HPO

A_GPO_ACLK
I_HPO_ACLK

S_AXI_HPO_FIFO_CTRL

ZYNQ:

ZYNQ7 Processing Syster

$|+ B C g & L
xadc_wiz_0 the FIXED_IO
N\
" p2a_ipt = and DDR outputs
DDR + user temp_siarm_out (= are connected to
axi_interconnect_0 .
FIXED 10 4 vcont_alarm_out = external pins
o + jil+ 800 vecaux_alarm_out f=
USBIND 0 4 i veopint_alarm_out =
s ACLK e | - 5_ax)_ME]
: el J' b vorpe_soen o -
TTCO_WAVEO_OUT o 1 veoddro_alam _out =
S00_ACLK == MOO_AXI o f: e = §_axi_ack -
TTCO_WAVE?_OUT == a ot out |
S00_ARESETN s_axi_aresetn
TTCO_WAVE2 OUT i channel_outd 0] e
FCLK_CLKO iy eoc_out =
= MOO_ARESETN =
FCLK_CLK1 slarm_out =
FCLK_RESETO_N A . €0s_out |-
busy_out =

you cannot leave the clock signal unconnected.

Figure 8. 11: Full Block diagram of the Zynq Processing System

Note that in Figure 8.11 the M_AXI_GPO_ACLK and S_AXI_HPO_ACLK are connected.
These two clocks must be connected to the same clock signal as the whole system
otherwise Vivado will generate and error.

Configuring the XADC to sample internal parameters

Show disabled ports

|4 s_axi_lite

+ “h_\h
s_axi_aclk

£_axi_aresetn

ipZintc_irpt
user_temp_alamm_out
wecint_alarm_out
wecaux_alamm_out
wecpint_alam_out
vecpaux_alamm_out
vecddro_alarm_out
ot_out
channel_out[4:0]
eoc_out

alarm_out

eo0s_out

busy_out

Trrrrwerrrrrororor

C

omponent Name xadc_wiz_0

Basic ADC Setup Alarms

Interface Options

(®) AxiaLite () DRP

Startup Channel Selection

Simultaneous Selection
Independent ADC

Single Channel

® Channel Sequencer

None

Figure 8. 12: XADC basic tab

cer Summary

Timing Mode

* Continuous

DRP Timing Options

DCLK Frequency

Selects the operating mode of XADC plon

Acquisition Time

Clock divider val

APV Alaal Fean.

Double-click on XADC wizard and change the setting from single channel to
channel sequencer. The channel sequencer is selected so that the XADC block will
hop from one parameter to the next. The ADC result will be stored in respective status
registers and therefore when one would like an ADC result of a particular parameter,
the latest result will be retrieved.

Note at this point that the result resides between bit 4 and bit 16 of the status
register and therefore this must be shifted to the right by four places to obtain the
right binary weights of the bits.

Page 6 of 15

4 s_axi_lite
+ Vb Mh
s_axi_aclk
s_axi_aresetn

ipZintc_ipt =
user_temp_alarm_out
weeint_alam_out
wveeaux_alam_out
wveepint_alarm_out
wvecpaux_alamm_out
veeddro_alarm_out
ot_out
channel_out[4:0]
e0c_out

alarm_out =

rerrrririua

eos_out =
busy_out =

Chapter 8 | Joseph Attard

Basic ADC Setup Alarms Channel Sequencer Summary

Channel Averaging From here

you can choose
how many samples
the ADC will take

Sequencer Mode | Continuous v

None
ADC Calibration Supply Sensor Calil .-

ADC Offset Calibration Sensor Off 64 before giving us
256 an average result
¥| ADC Offset and Gain Calibration /| Sensor Offsevamuwamroanration

v Enable CALIBRATION Averaging

External Multiplexer Setup
if we are going to use more ADC inputs we tick here

External Multiplexer
This shows that i am using the

1MSPS channel and not the AUX
channels

Channel for MUX VP VN

Enable muxaddr_out port If MUX is selected then
we need address bits to
indicate which channel is
being sampled

ok | [cmen]

Figure 8. 13: ADC setup tab

For the ADC setup page, it would be a good idea to configure the XADC block to
sample at least 16 times before the result is available to the user. Leave the rest of

the settings as they are.

© Documentation

IP Location

Show disabled ports

ipZintc_irpt
user_temp_alarm_out
wesint_alarm_out
wecaux_alamm_out
wocpint_alamm_out
vecpaux_alamm_out
veeddro_alamm_out
ot_out

channel_out [4.0]
eoc_out

alarm_out

eos_out

busy_out

|4 s_axi_lite
l|+ wp_vh

= s_axi_aclk

4

£_axi_aresetn

Component Name xadc_wiz_0

from here you set the alarms

Basic ADC Setup Alarms [Channel Sequencer Summary

' Over Temperature Alarm (°C) 7| User Temperature Alarm (°C)

Trigger |125.D| [-40.0 - 12 Trigger 85.0

Reset 70.0 [-40.0-125.0 Reset |60.0

¥ VCCINT Alarm (Volts) ¥'| VCCAUX Alarm (Volts)

Lower 097 [0.0 - 1.05] Lower 1.75

Upper 1.03 [0.0- Upper 1.89

VCCBRAM Alarm (Volts) ¥ VCCPint Alarm (Volts)

Figure 8. 14: ADC Alarms Tab

The Alarms could be switched off my removing the tick from the boxes.

Page 7 of 15

Show disabled p

orts

Chapter 8 | Joseph Attard

by ticking these boxes, i guess that i can select

which parameter i would like to sample but not

Component Name Xaggn'ﬁ'n?‘mﬂedyet

Channel Sequencer Sur

ChappalEnahle Average Enable Bipolar Acquisition Time
" CALIBRATION
ipZinte_impt
user_temp_alarm_out TEMPERATURE
wveeint_alamm_out
weeaux_alamm_out VCCINT
=Y i i wecpint_alarmm_out
i + S_m:;ne woopaux_alamm_out VCCAUX
I 5 ::_aclk weoddro_alamn_out VCCBRAN
- s:axi:aresetn ot_out
channel_out[4:0]
eoc_out VCCPINT
alarm_out
eos_out VCCPAUX
busy_out
— VCCDDRO
VPN 7
VREFP

e

Figure 8. 15: ADC Channel Sequencer Tab

Figure 8.15 shows a list of ADC channels that one can include in the sequencer
settings. At that time the author was just testing so to correct the statements done
in Figure 8.15, the internal parameters that must be sampled, could be ticked in the
list and these will be enabled. However, it must also be said that even though in
Figure 8.15 the internal parameters were not selected, they could still be sampled
from the processing system.

Create a hardware wrapper.

After the hardware wrapper, the hardware is exported by File-> Export - Export
Hardware. Then launch SDK from the File menu.

The Software

‘G Project Explorer Figure 8. 16: List of libraries in SDK
¥ & libsrc

& canps_v3_2

= coresightps_dcc_v1 4

= cpu_cortexa9 v2_5

= ddrps_v1_0

& devcfg v3.5

= dmaps_v2_3

= emacps_v3_6

After launching SDK, do not forget the create a FSBL
application and a Hello World application. The XADC library
is located at the very bottom of the list of folders as shown
Figure 8.16. Double click on it to find all the support files
for this XADC block.

& generic v2_0
& gpiops_v3_3
= iicps_v3 5

& qgspips_v3_ 4
= scugic_v3_8
& scutimer_v2_1
& scuwdt v2_1
= sdps_v3 3

= standalone_v6_5
= tteps_v3_5

e uartps_v3 5
= usbps v2 4

= xadcps_v2_2

& Makefile

Page 8 of 15

Chapter 8 | Joseph Attard

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "xadcps.h"
#include "xil_types.h"

include these two header files

Figure 8. 17: Include Directives
Initialize the XADC peripheral using the following instructions:
From: xadcps_sinit.c get the lookup function:
XAdcPs_Config *XAdcPs_LookupConfig(ul6 Deviceld)

This function returns an XAdcPS_Config type and therefore one must declare it at
the beginning of the main function.

XAdcPs Config *XADC_ConfigPtr;

The ul6 Deviceld is listed in xadcps_g.c and in the parameter-list it should be
replaced by: XPAR PS7 XADC _O_DEVICE ID. So, the complete statement should
look like:

XADC _ConfigPtr=XAdcPs_LookupConfig(XPAR PS7 XADC O _DEVICE_ID);

Another part of the initialization process is the configuration function that is found
in xadcps.c file. This looks like this:

int XAdcPs_Cfglnitialize(XAdcPs *InstancePtr, XAdcPs_Config *ConfigPtr,
u32 EffectiveAddr)

therefore, it returns an integer type and one must replace the instance pointer with
&XAdcPs-instance-pointer-name. The above statement is written as:

XADCstatus=XAdcPs_CfglInitialize(&XADCblock,XADC_ConfigPtr,XADC_ Config
Ptr->BaseAddress);

To avoid unnecessary warnings, check whether the configuration initialization was
successful or not by:

If (XADCstatus!= XST SUCCESS)

{
return XST FAILURE;

Page 9 of 15

Chapter 8 | Joseph Attard

The statement-listing up till now is:

main()

int XADCstatus;
//this variable will hold the return value of the XAdcPs_cfgInitialize()

XAdcPs XADCblock; //this is the XAdcPs-instance name

XAdcPs_Config *XADC_ConfigPtr; //XAdc_config pointer
init_platform(); //initialize according to Z-turn board parameters

XADC_ConfigPtr=XAdcPs_LookupConfig(XPAR_PS7_XADC_e_DEVICE_ID);
/* get the name of the XADC block*/

/* configure the XADC peripheral */
XADCstatus = XAdcPs_CfgInitialize(&XADCblock, XADC_ConfigPtr,XADC_ConfigPtr->BaseAddress)
if(XADCstatus!= XST_SUCCESS)

{
}

return XST_FAILURE;

Code Snippet 8. 1: Initializing the XADC block in the C application

There are some statements that are unique to the XADC initialization. This is one
of them:

The self-test function will check whether there are any problems with the XADC
by resetting the device, then writes a value in the Alarm Threshold Register, then
resets the device again. This function is found in xadecps_selftest.c and returns a
value of type int.

int XAdcPs_SelfTest(XAdcPs *InstancePtr);
selfteststatus = XAdcPs_SelfTest(&XADCblock);

selfteststatus is a variable of type int that stores the returned value of the self-
test function.

if (selfteststatus != XST_SUCCESS)

{
return XST_FAILURE;

}
this will suppress the warning that we are not using the int variable

Next, stop the channel sequencer by selecting the mode to be as single channel
mode. The function resides in xadcps.c and is:

void XAdcPs_SetSequencerMode(XAdcPs *InstancePtr, u8 SequencerMode)

To select a mode for the parameter u8 SequencerMode, there is a list in xadcps.h
file.

#define XADCPS_SEQ_MODE_SINGCHAN 3 /**< Single channel -No Sequencing */

Page 10 of 15

Chapter 8 | Joseph Attard

* #define XADCPS_SEQ_MODE_SAFE @ < Default Safe Mode >
#define XADCPS_SEQ_MODE_ONEPASS 1 < Onepass through Sequencer >
#define XADCPS_SEQ _MODE_CONTINPASS 2 < Continuous Cycling Sequencer >
#define XADCPS_SEQ MODE_SINGCHAN 3 < Single channel -No Sequencing >
#define XADCPS_SEQ_MODE_SIMUL_SAMPLING 4 < Simultaneous sampling>
#define XADCPS_SEQ_MODE_INDEPENDENT 8 < Independent mode b */

Code Snippet 8. 2: Definintion statements found in xadcps.h file
The next thing is to disable the alarms by using the function
void XAdcPs_SetAlarmEnables(XAdcPs *InstancePtr, ul6 AlmEnableMask)

found in xadcps.c file.

XAdcPs_SetAlarmEnables(&XADCblock, 0x0000); //O = disables alarm ; 1 = enables alarm

Restart the sequencer and make it sample internal parameters such as Zynq 7
temperature, VCCINT etc.

XAdcPs_SetSequencerMode(8&XADCblock, XADCPS_SEQ _MODE_SAFE);

Select the channels to sample:

The function is found in xadcps.c file.

int XAdcPs_SetSeqChEnables(XAdcPs *InstancePtr, u32 ChEnableMask)

and the parameters are found in xadcps hw.h file.

Important Note:

Each function carries with it a description and in the description, there will be a note
indicating from where the parameters can be selected giving the name of the header
file and also how the parameters are named. An example follows:

Page 11 of 15

Chapter 8 | Joseph Attard

f**/

mf**
Ed

* This function enables the specified channels in the ADC Channel Selection
* Sequencer Registers. The sequencer must be disabled before writing to these
* regsiters.

*

* @param InstancePtr is a pointer to the XAdcPs instance.

* @param ChEnableMask is the bit mask of all the channels to be enabled.
* Use XADCPS_SEQ CH__ * defined in xadcps_hw.h to specify the Channel
* numbers. Bit masks of 1 will be enabled and bit mask of @ will

* be disabled.

* The ChEnableMask is a 32 bit mask that is written to the two

* 16 bit ADC Channel Selection Sequencer Registers.

*

* @return

* - XST_SUCCESS if the given values were written successfully to

* the ADC Channel Selection Sequencer Registers.

* - XST_FAILURE if the channel sequencer is enabled.

*

*

@note None

There are some ready-made macros that one can use that convert raw ADC data
into the quantity one would like to measure such as the internal temperature of the
processor etc. These macros are found in xadcps.c file.

ul6 XAdcPs_GetAdcData(XAdcPs *InstancePtr, u8 Channel);

/**/

_/**
*

* Get the ADC converted data for the specified channel.

*

* @param InstancePtr is a pointer to the XAdcPs instance.

* @param Channel is the channel number. Use the XADCPS_CH_* defined in
. the file xadcps.h.

* The valid channels are

* - @ to 6

* - 13 to 31

*

* @return A 16-bit value representing the ADC converted data for the

* specified channel. The XADC Monitor/ADC device guarantees

* a 1@ bit resolution for the ADC converted data and data is the

* 10 MSB bits of the 16 data read from the device.

*

* @note The channels 7,8,9 are used for calibration of the device and
*

hence there is no associated data with this channel.
kS

***/
~ul6 XAdcPs_GetAdcData(XAdcPs *InstancePtr, u8 Channel)|

Code Snippet 8. 3: ADC result function

Page 12 of 15

Chapter 8 | Joseph Attard

Declare a variable of type 16 bit unsigned (ul6) at the beginning of the main
function. Then use it to store the return variable of the XAdcPs_GetAdcData().

The returned data from this function is just a decimal number from O to 4095 since
it is 12 bits wide. This number must be processed again to reflect the analogue
quantity it is monitoring. There are two macros that use 32-bit unsigned numbers,
and therefore the returned number from the above function will be stored in a 32-bit
number not in a ul6 data type!!

The instance pointer is always the one declared somewhere above:

&XADCblock and the u8 Channel is taken from xadcps.h Underneath there is a
list of u8 channels:

/************************** Constant Defiﬂitions ****************************/

/**

* @name Indexes for the different channels.

* e
*/

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#define
#define
#define
#define
#tdefine
#define
#tdefine
#tdefine

ADCPS_CH_TEMP

XADCPS_CH_VCCINT
XADCPS_CH_VCCAUX
XADCPS_CH_VPVN
XADCPS_CH_VREFP
XADCPS_CH_VREFN
XADCPS_CH_VBRAM

oxe
exl
ex2
ex3
ex4
ex5
exe6

VAP
Ve Y
FEL:
/¥
/¥
/¥
/¥

On Chip Temperature */

VCCINT */

VCCAUX */

VP/VN Dedicated analog inputs */
VREFP */

VREFN */

On-chip VBRAM Data Reg, 7 series */

XADCPS_CH_SUPPLY_CALIB @x@7 /**< Supply Calib Data Reg */

XADCPS_CH_ADC_CALIB ©x@8 /**< ADC Offset Channel Reg */

XADCPS_CH_GAINERR_CALIB €x09 /**< Gain Error Channel Reg */

exeD /**< On-chip PS VCCPINT Channel , Zyng */

BXBE /**< On-chip PS VCCPAUX Channel , Zyng */

BxBF /**< On-chip PS VCCPDRO Channel , Zyng */
16 /**< Channel number for 1st Aux Channel */
31 /**< Channel number for Last Aux channel */

XADCPS_CH_VCCPINT
XADCPS_CH_VCCPAUX
XADCPS_CH_VCCPDRO
XADCPS_CH_AUX_MIN
XADCPS_CH_AUX_MAX

Code Snippet 8. 4: ADC Channel List

The macro that converts the 12-bit ADC data into temperature resides in xadcps.h.
From the comments that accompany it, it was determined that it returns a float

type.

* This macro converts XADC Raw Data to Temperature(centigrades).

* @param AdcData is the Raw ADC Data from XADC.

* @return The Temperature in centigrades.

* @note C-Style signature:

*

* float XAdcPs_RawToTemperature(u32 AdcData); /[/returns afloat data type

ﬁ*x***#****ﬁ*x***#****ﬁ*x***#****ﬁ*x*&*x****x*x*g******ﬁ*x*&******ﬁ*x*&*#****/
#define XAdcPs_RawToTemperature(AdcData) \
((((float)(AdcData)/65536.8f)/0.00198421639f) - 273.15f)

/*i*M******x*i*M********i*M********i*M********i*M********i*M********i*m******/

Code Snippet 8. 5: Raw to Temperature Macro

Page 13 of 15

Chapter 8 | Joseph Attard

Note that AdcData is of type u32 while the returned data from the previous
function XAdcGetAdcData() is of type ul6. However, this might not impose a
problem since the data will be stored in the correct word position within the 32-bit
word.

Because the above macro accepts u32 data, the print() already written in the hello-
world program had to be changed to printf{) because the 32-bit raw data is not
supported in the print() function. On the other-hand, the printf{) supports %lu which
means unsigned long data type.

The whole software program is listed below:

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "xadcps.h"
#include "xil_types.h"

void delay (void);

“int main()
{
int XADCstatus;
//this variable will hold the return value of the XAdcPs_cfgInitialize()
int selfteststatus;
// this varialbe holds the return value of the self test function
int SeqEnable;
/*this variable holds the return value for the seq_enables ()*/

XAdcPs XADCblock; //this is the XAdcPs-instance name

XAdcPs_Config *XADC_ConfigPtr; //XAdc_config pointer
init_platform(); //initialize according to Z-turn board parameters

u32 rawCPU_temp, rawintVCC, rawBRAMvoltage, rawAUXVCC;
float CPUtemp,intVCC,BRAMvoltage, AUX_VCC;

XADC_ConfigPtr=XAdcPs_LookupConfig(XPAR_PS7_XADC_e_DEVICE_ID);
/* get the name of the XADC block*/

/* configure the XADC peripheral */
XADCstatus = XAdcPs_CfgInitialize(&XADCblock, XADC_ConfigPtr,XADC_ConfigPtr->BaseAddress);
if(XADCstatus!= XST_SUCCESS)

{
}

/*Run a self test by resetting the device, write a name in the Alarm Threshold
* Register and resetting the device again*/

selfteststatus = XAdcPs_SelfTest(&XADCblock);

if(selfteststatus != XST_SUCCESS)

{
}

return XST_FAILURE;

return XST_FAILURE;

Page 14 of 15

Chapter 8 | Joseph Attard

while(1)
{
rawCPU_temp = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_TEMP);
CPUtemp = XAdcPs_RawToTemperature(rawCPU_temp);
printf("raw temp data: %lu while temp in degree Celcius: %f\n\r",rawCPU_temp,CPUtemp);

rawintVCC = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VCCINT);
intVCC = XAdcPs_RawToVoltage(rawintVCC);
printf("raw intVCC data: %lu while internal VCC: %f\n\r",rawintVCC,intVCC);

rawBRAMvoltage = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VBRAM);
BRAMvoltage = XAdcPs_RawToVoltage(rawBRAMvoltage);
printf("raw BRAM voltage: %lu while BRAM voltage: %f\n\r",rawBRAMvoltage,BRAMvoltage);

rawAUXVCC = XAdcPs_GetAdcData(&XADCblock, XADCPS_CH_VCCAUX);
AUX_VCC = XAdcPs_RawToTemperature(rawAUXVCC);
printf("raw Aux VCC: %lu while Aux VCC: %f\n\r",rawAUXVCC,AUX_VCC);
printf("\r\n");
printf("\r\n");

delay();
}
cleanup_platform();
return 0;
}
void delay (void)
{
for(unsigned i = 9; i < 100000000; i++)
{
//do nothing
}
}

It must be mentioned here that the raw data from the XADC should be shifted
to the right by 4 places. This is not shown in this program however, it will be
pointed out in the future programs.

Page 15 of 15

Chapter 9 | Joseph Attard

Chapter 9 Sampling External ADCs from the Processing System

The previous chapter dealt with sampling the internal parameters of the System on
Chip. As promised, this chapter will show how to monitor external analogue inputs
from the Processing System. Later, the same will be done, but this time from the
Programmable Logic.

So, create a project as shown in previous chapters. Do not include any VHDL
modules. Once the Vivado project is opened, click on Create a Block Design. In the
block design include the Zynq Processing System, the AXI interconnect and the
XADC wizard.

The AXI interconnect should be configured to have one master output as shown in
Figure 9.1 below.

¢ Re-customize IP X
AXI Interconnect (2.1) ‘
© Documentation IP Location

Component Name axi_interconnect_0

Top Level Settings ~ Slave Interfaces | Master Interfaces
Number of Slave Interfaces 1 v (1) double Click on the interconnect block
(2) change the number of Masters to 1
I Number of Master Interfaces v (3) hit OK

Interconnect Optimization Strategy

|2
K :
2
Figure 9. 1: Configure the AXI interconnect block

This time, the Processing System Reset Block will be added in the design. This will
help reduce the warning and errors.

AXl| Interconnect &
(1) right click again on the canvas bu
(2) write "reset" in field ' XADC Waard
(3) double click on "Processor System Reset"
Search: reset| (2 matches)

3F Processor System Reset

4F Simulation Reset Generator

Figure 9. 2: Including the Processing System Reset Block

Now connect the resets of the AXI interconnect to the dedicated reset on the
Processing System Reset block as shown in Figure 9.3 on the next page.

Page 1 of 20

Chapter 9 | Joseph Attard

xadc_wiz_0
p

L. ip2inic_inpt
axi_interconnect_0 e i

o _temp_alarm_
" cant_alarm_out
processing_system7_0 il S00_AxI v:m-d-m-ul

ACLK T
s] [e TR et

an . " VCCDauX

- - i 500_ACLK =2 MO00_AXI 4 ||+ Vp_Vn - -
M_AXI_GPO_ACLK M_AXI_GPO 4| == - vcoddro_alarm_out
ZYNQ. FCLI_CLKO S00_ARESETN —={ 8 axi_ack e

MOO_ACLK @ s_axi_aresen

FOLK_RESETD N e E channel_ou{4:0|
ZYNQ7 Processing System u”c’:

. .) AX| Interconnect anm_
There is a dedicated reset output pin sys_reset 0 eos_out
that must be connected with the resets — = busy_out

in the interconnect SR LD h

axt_resel_n

aux_reset_in
mb_debug_sys_rst
dom_locked

bus_stuct_resst0:0]
penpheral_resef0:0]
nterconnect aresetnf0:0]
penpheral_aresenn [0:0]

Processor System Reset

Figure 9. 3: Connecting the Reset of the AXI interconnect block

XADC Wizard

Now, connect the reset of the XADC wizard block to the Processing System Reset
block as shown in Figure 9.4 below.

axi_interconnect_0

xadc_wiz_0

ip2inc_ipt

[+ 3 user_temp_alarm_out
i ! 800 AXI vcont_alarm_out
o ACLK B vecaux_alarm_out
X Vi alarm_out
ARESETN 4 o axi me - =
S00_ACLK 25 MO0_AXI 4 f I+ vo_va vcw_uavmm_”
'T_ 800 ARESETN o ax|_ack veoadro_a a_m
MOO_ACLK pen@Q) S_axi_aresein -
l— MOO_ARESETN channel_out40)
B eoc_out
J
AXI Interconnect Uaﬂn_::
eos
proc_sys_reset_0 X
busy_out
slowest_sync_dk mb_reset \ e
zZar
ext_reset_in bus_struct_resetj0.0]
R ner Wy penpheral_reseq0:0] There is also a dedicated asynchronous reset

mb_debug_sys_rst nterconnect_aresetnf0:0]
dom_locked perng i 0:0]

output that could be connected to the XADC

Processor System Reset

Figure 9. 4: Connecting the Reset of the XADC

Now connect the Reset of the Processing System to the Reset block as shown in
Figure 9.5 on the next page.

Page 2 of 20

processing_system7_0

Chapter 9 | Joseph Attard

axi_interconnect_0

-—

i s00_axi
ACLK

ARESETN

500_ACLK = MO0_AXI 4 i

M_AXI_GPO_ACLK ZYNQ‘?

S00_ARESETN
MOO_ACLK

ZYNQ7 Processing System

Now connect the reset
from the PS to the PSR

—
—

MOO_ARESETN

AX| Interconnect
proc_sys_reset_0

slowest_sync_dk mb_reset

ex_reset_in bus_struct_reset|0:0]
aux_reset_n penpheral_reseq0:0|
mb_debug_sys_rst nlerconnect_aresetni0:0]
acm_locked penpheral_aresen [0:0]

Processor System Reset

Figure 9. 5: Connecting the Reset of the Processing System

Jiagram
@ Q

LY
L]

Click on Run Block Automation.

* Designer Assistance available!

L&)

Jl_.

X Address Editor X

Now click here

Automatically make connections in your design by checking the boxes of the blocks to connect Select a block on the leftto dis

configuration options on the right

Q@
~ '/ All Automation (1 out of 1 selected)
7 % processing_system7_0

As always make sure the tick
on Apply Board Preset box is
present.

Description
This option sets the board preset on the Processing System. All curre
overwritten by the board preset. This action cannot be undone. Zynq7
applies current board preset and generates external connections for |
and DDR interfaces.

NOTE: Apply Board Preset will discard existing IP configuration - plea
if you wish to retain previous configuration.

Instance: /processing_system7_0

Options

Make Interface External: FIXED_IO, DDR

Make sure this is checked
Apply Board Preset: v

click on OK
Cross Trigger In: Disable v
Cross Trigger Out: Disable v

091‘ AL axi_interconnect_0 —
Now connect all the clock _ ¥ 00 4
& ACLK
. (] -
signals to the 100 MHz & | [l+sseemoan g Borax E wesed g
clock output from the 1 ey L [
. H MO0_ARESETN
Processing System. H
E proc_sys_reset 0
Figure 9. 6: Connecting the clocks s SYNQT Pracaasing Sysiam showest_sync ok ™ resat "
= L i_mset_in tuis_struct_me e 0] B
otp Connect these two clock inputs with the rest of 7 _punl P .
:%— the clock signals :i:.::‘*“ "::':::::::z: I

Page 3 of 20

Chapter 9 | Joseph Attard

xadc_waz_0

em7_0 Connect the data lines
- 2t it

usar_lemp_asarm_out
woon_alanm_out

DOR ||
FIXED_I0 |
B0 +||

|

axi_nterconnect_0

wocaux_alarm_out

!Bt S00 A
ACLK

MU;TD_O I rl_ ARESETN - . & B wocpet_aslanm_out
- A sl AcK iE moo_aa + Ei—l |4+ vo_vn vocpaux_ahm_out
TI'COW- : wooddm_alasn_out

O. S00_ARESETN s_axi_ack
TTOO_WAVE1_OUT = - ol _out

- - MOD_ACLK 5 am_aresein -
TTCO_WAVEZ_OUT = L chamel_ouge)
MO0_ARESETN

FCLK_CLKO - eac_out
FCLK_CLK1 = *— Block Pin: MOO_ACLK sam_out
FCLK_RESETO_N P_I proc. 8ys reaet O sas_out

Figure 9. 7: Connecting the Data lines

Figure 9.7 shows how to connect the data lines between the Zynq Processing System,
the AXI interconnect block and the XADC wizard.

The next thing to do is to configure the XADC wizard, so double click on the XADC
block and follow the instructions in the Figures underneath.

© Documentation IP Location

Show disabled ports Component Name xadc_wiz_0
ADC Setup Alarms Channel Sequencer Summary
Interface Options Ti
ipZinto_jpt =
ey G (® AxidLite DRP | None
vecint_alamm_out =
weoaux_alam_out
Sy vooplie_ lam 0wt = Startup Channel Selection V]
i+ von voopaux_alarm_out
4 veeddro_alam_out =)
7=k oty B Simultaneous Selection
4 s_axi_aresetn i
o Independent ADC
0c_out =
ik Single Channel
eos_out ™
bosy oL - * Channel Sequencer (1) select the channel sequencer

mode

AXI4STREAM Options

Figure 9. 8: Select Channel Sequencer

ComponentName xadc_wiz_0

Basic || ADC Setup | Alarms | Channel Sequencer | Summary
change this to 16

Sequencer Mode Continuous v Channel Averaging 16 v
ADC Calibration Supply Sensor Calibration
ADC Offset Calibration Sensor Offset Calibration
/ ADC Offset and Gain Calibration ¥ Sensor Offset and Gain Calibration

+| Enable CALIBRATION Averaging

External Multiplexer Setup

External Multiplexer leave this as is

Channel for MUX VP VN -

Enable muxaddr out po

Figure 9. 9: Enable an average of 16

Page 4 of 20

Chapter 9 | Joseph Attard

Component Name |xadc_wiz_0

Basic ADC Setup Alarms Channel Sequencer Summary

Channel Enable Average Enable Bipolar Acquisition

CALIBRATION v in this page i have enabled calibration,
we will read the internal temperature
the BRAM voltage
VCCINT external analogue input Vp

Vaux1l and Vaux 8 because they are
VCCAUX near each other

TEMPERATURE v

VCCBRAM v
VCCPINT

VCCPAUX

VCCDDRO

VPNVN v
VREFP

VREFN

Figure 9. 10: Selecting the Channels

Figure 9.10 shows that the channels of interest must be selected from the list. The
Auxiliary pins are not shown in Figure 9.10 but they are selected. Now close the
XADC wizard configuration. Click on Run Block Automation.

Q@ @ @ N © Q + C o

* Designer Assistance available. Run Connection Automation <j click here

A

For the window of Figure 9.11, click on OK.

Q - -
= -

¥ 1] All Automation (1 out of 1 selected) Connect clock-pin ({/proc_sys_reset_0/slowest_sync_clk}) to selected clock source. Also
v/ 4F proc_sys_reset_0 configure and connect clock-pins of connected bridge-IPs{AX! Interconnect, Smartconnect)
7/ © slowest_sync_clk as needed. Also infer Processor System Reset block and connect synchronous reset
source to associated reset pin(s) as needed.

Description

Options
Clock Source: | Iprocessing_system7_0/FCLK_CLKO (100 MHz v

just hit OK underneath

Figure 9. 11: Warning Box

Page 5 of 20

Chapter 9 | Joseph Attard

Now, the Vp/Vn pins must be connected to

B Copy their respective external pins, to do so, hover
—_— the mouse on Vp/Vn pins on the XADC
— Q search.. Ei"n":rﬁ’;‘ﬁt":ﬁcinmc wizard block, right click and then select Make
W SelectAll oo make external. External as shown in Figure 9.12.
j: =+ AddIP.. Do this for all ADC pins Figure 9. 12: Connect Vp/Vn to their external pins
Ill4 va Add Module. .
I f_:: 5 Make External Ctri+
== IP Settings...
[¥ validate Design
" h— Start Connection Mode
- L}
- f Maks Cannartinn
=)
[
© xadc_waz_0
=) processng_sysem7_0
o DOR | — 2%_imerconned 0 user m':?’:“.:
FOED 10 4 i wednt_alarm_out
_ o0+ ”T\cf:n'w | I P vecusx_alarm_out
r;' Vo VN 0 [t + s_mou WPO FIFO_CTRL R — I B ARESETN -A + vp vn e
E Vaux] 0 [HY S_AXI_HPO ZYNO\ Tm:;:\lr-z?cu'm _ S00_ACLK e MDD AXI 4 ﬂ + Vax .::::_:u;:_:
—_— Vaux8 0 D— M_AXI_GPO_ACLK . YTCD:WAVE':DUT L S00_ARESETN —‘ + Vaud - “:M
= 8.A%1_HPO_ACLK TTCO_WAVEZ OUT = MO0_ACLK [e channel cuf40)
- R MO0 ARESETN pefee} 5 34 _arcactn e ot
£ FOLK_CLK1 = AXI Interconnedt slarm_odt
é‘._ FOLX_RESETO N @ proc_sys_reset 0 0s out
e ZYNGT Processing System || e —— R ——
w:J.-\ _j P m; in : bus stua m;qc-ol AL W
E o _reset_in pefphenl_reseq0 0]
@ mb_debug sys_rst interconnect_aresetn{0 0]
E aaw_locked pedphonl_aresean(D 0]
_;1' Processor System Reset
]

Figure 9. 13: Showing the External Pins of the ADCs

Note in Figure 9.13 that the auxiliary channels 1 and 8 have been enabled together
with the dedicated Vp/Vn ADC. It would be a good idea if the design is validated.

= |C

Validate Design (F6)

o | {F

There were two critical warning messages while validating this design.

Messages

© [BD 41-1356] Address block </xadc_wiz_0/s_axi_lite/Reg> is not mapped into
</processing_system7_0/Data>. Please use Address Editor to either map or exclude

it

© [BD 41-1356] Address block </xadc_wiz_0/s_axi_lite/Reg=> is not mapped into
</processing_system7_0/Data=. Please use Address Editor to either map or exclude

it

<t

l Open Messages View

Figure 9. 14: Critical Warnings

If the warning in Figure 9.14 are
displayed, then follow their
instructions and use the address
Editor to assign memory
locations to the XADC block.
This is illustrated in Figure 9.15
on the next page.

Page 6 of 20

Chapter 9 | Joseph Attard

BLOCK DESIGN - block_design *

w || Diagram x| Address Editor <
@
zla = s &
Slave Interface Base Name Offset Address Ran

S |~ ¥ pipcessing_system7_0
@ S - Use the drop down
i Data (32 address bits : 0x40000000 [1G]] arrows on the left and

Unmapped Slaves (1) select the xadc wizard
w
= == xadc_wiz_0 Js_axi_lite Reg
'oga‘ A Unconnected Slaves

= processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCM

=

Figure 9. 15: Assigning an address to the XADC block

. right click
- e b ol choose Assign Address
= xadc_wiz_0 s_axi_lite Reg |.
v = Unconnected Slaves | Assign Address
@ processing_system7_0 S_AXI_HPO HPO_DDR_LJ

Figure 9. 16: Choose the Assign Address from list

Cell Slave Interface Base Name Offset Address Range High Address
v 4F processing_system7_0

= yadc_wiz_0 s_axi_lite Reg 0x43C0_0000 6.. ~ Ox43CO_FFFF

v Unconnected Slaves
= processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCHM

Figure 9. 17: The XADC block is assigned an address

Now it is a good idea to validate the design from the Block Design Menu.

¢ Validate Design X

o Validation successful. There are no errors or critical warnings in this design.

Figure 9. 18: Validation Successful message

Now create a Hardware Wrapper.

Page 7 of 20

A S R - R -
L - Source Node Properties...
BLOCK DESIGN - block_de @& OpenFile
Sources % Design | I Create HDL Wrapper.‘.l
- a View Instantiation Template
Q =<+ :
[Generate Output Products...
v Design Sources (,
. : Reset Output Products...
#[1 block_desig
s .) (1) right click on block design
- : (2) choose create hardware wrapper
Hierarchy |P Source

Figure 9. 19: Steps to Create a Hardware Wrapper

4

BLOCK DESIGN - block_design

Sources X Design Signals Board — e 5

Q =& |+ Updating) ¢

A

v Design Sources (1
F-8) block_design (block_design.bd)
> Constraints

Hierarchy IP Sources Libraries Compile Order

Figure 9. 20: Making sure that updates are done

Chapter 9 | Joseph Attard

Figure 9.20 shows an important step. If the updates are not done and the synthesis
Updating message

begins, Vivado will generate an error. So, make sure that the

disappears before clicking to synthesize and implementation.

QU = F |a + A
Name
~ s All ports (136

>

>

~

c DDR_6075 (71
@ FIXED_IO_6075 (59
= Vaux1_0_6075 (2)
~ | Scalar ports (2
- Vaux1_0_v_n
& Vaux1_0_v_p
& Vaux8_0_6075 (2
~ [Scalar ports (Z
& vaux8_0_v_n
& Vaux8_0_v_p
@ Vp_Vn_0_6075 (2
v [w Scalar ports (2
& Vp_Vn_0_v_n
& Vp_Vn_0_v.

Scalar ports (0

Direction Board Part Pin Board Part Interface Neg Diff Pair Package Pin

INOUT

INOUT

IN The pinouts tally

with the schematics

(1) open the implemented design

IN (2) tick on the boxes as shown D18

IN (3) Leave the default voltage to 1V8 E17

IN

IN A20

IN B19

IN

IN L10

IN K9

Figure 9. 21: Pinouts

Fixed Bank
v 502
5z (Multiple)
v | a5
v 35
v 35
v 35
v 35
v 35
v 0
v 1]
v 0

/0 Std

(Multiple)*
(Multiple)*
default (LWVCMOS*

default (LVCMOS*
default (LVCMOS*
default (LVCMOS*

default (LVCMOS*
default (LVCMOS*

Figure 9.21 is just a check to see that the pinouts assigned automatically by Vivado
tally with the schematics. Make sure that the Fixed boxes are ticked. Now click on
Generate Bitstream File and wait. If there are no errors and the bitstream file is
generated successfully, export the hardware by File > Export - Export Hardware.

When it is done exporting the hardware, Launch SDK from within the Vivado project.

Page 8 of 20

Chapter 9 | Joseph Attard

The Software

In SDK, create a new FSBL project and a new Hello World project. These two steps
have been shown in previous chapters. For this project, the ADC readings will be
shown on a serial terminal so the following BSP adjustments must be made. This
has been shown before in previous chapters.

@ ps7_init.c - orw
. Go Into i
[ps7_init.k su
@ ps7_init.r Open in New Window <
. . pe
2 ps7nitt B Copy Ctrl+C bet |
& system.h Paste Ctrl+V
= C code % Delete Delete j Sy
(i C_code_bsp Source (1) right click on the C > bpol
=¥ FSBL_app Move.. code project bsp folder Narr
#® FSBLapp E Rename... F2 lersic
2 Import... (2) Choose Board Support iptic
&1 Export.. Package Settings
tatic
Refresh F5
Close Project 1 Dri
Close Unrelated Projects eser
Build Configurations >
Run As > | &g
& Debug As >
5 52
Target Connec Compare With .
= Hardware S . arn
. Restore from Local History...
& Linux TCF
& QEMU TCf;I ii: Board Support Package Settings gs
T Re-generate BoP sources

Figure 9. 22: Open the BSP Setting

Board Support Package Settings X Flgure 9 . 23 ShOWS the
Board Support Package Settings % StepS to enable UART 1
Control various settings of your Board Support Package. lnStead Of UART O ThlS IS
v O\;el::fitlone Configuration for OS: standalone because the Z_turn board
« drivers Name Value Default Type Deseription has an interface chip for
ps7_cortexa9_0 hypervisor_guest false Gfalse boolean Enable hypervisor gu¢ . . .
stdin Vv none peripheral stdin peripheral Serlal data Communlcatlon
stdout ps7_uart 0 none peripheral stdout peripheral :
zyngmp_fsbl bsp false false boolean Disable or Enable Opt ConneCted to the plns Of
false false boolean Enable MicroBlaze Exc UART 1 .
false false boolean Enable S/W Intrusive

Figure 9. 23: Change to UART 1

@ Board Support Package Settings X

Click on OK underneath
and wait for the project to
compile again.

Board Support Package Settings m@

Control various settings of your Board Support Package.

v Overview
Configuration for OS: standalone
standalone
~ drivers Name Value Default Type Description
ps7_cortexad 0 hypervisor_guest false false boolean Enable hypervisor gue
stdin ps7_uart_1 none peripheral stdin peripheral
stdout pps7_uart_1 none peripheral stdout peripheral
zyngmp_fsbl bsp false false boolean Disable or Enable Opt
false false boolean Enable MicroBlaze Exc
false false boolean Enable S/W Intrusive

Now open the HelloWorld.c file.

Page 9 of 20

Chapter 9 | Joseph Attard

#include <stdio.h>
#include "platform.h"

#include "xil_printf.h"
#include "xadcps.h"

Figure 9. 24: Include the XADC library

e U Ve T

: SF SySLernLnai > SYSIMION v/ 4 v = xadcps&E
= C=code & tteps V3.5 ¥ = src
~ [C_code_bsp & uartp_s V_3 5 [2 xadcps_g.c
1 B5P Documentation = usbps_v2_4 xadcps_hw.h
I+ & ps7 cortexad 0 | = xadcp;_vgj l¢ xadcps_intr.c
= code Makerle [¢ xadcps_selftest.c
& include [él xadcps_sinit.c
& lib [¢ xadcps.c
xadcps.h
Makefile aree

L svstem.mss

Figure 9. 25: Location of the XADC Library

Figure 9.25 shows the location of the XADC library within the C project environment.
It also shows the functions associated with the XADC block.

SvHURI®BvAYRiEvOovy VR EREEC Svidnoy o

5Project Explorer B&|¥ v=18 wsystem.hdf (W systemmss (wsystemmss [d *helloworld.c |ls xadcps sinit.c &

£

& scutimer_v2_1 ~

o - This function looks up the device configuration based on the unic
& scuwdt v2_1 The table XAdcPs_ConfigTable contains the configuration info for
& sdps v3 3 in the system.

& standalone_v6_5
@param DeviceId contains the ID of the device for which the

= sysmon_v7 4 X - X & -
device configuration pointer is to be returned.

= tteps_v3_5
= uartps_v3_5 @return
- A pointer to the configuration found.
- NULL if the specified device ID was not found.

& usbps_v2_4
v = xadeps_v2_2

¥ & src .
@note None.

@

X K K K K K K K ¥ X X % %

xadcps_g.c

xadcps_hw.h T T T T T T T T T T T T T o 3 3 3 o o o o K

[¢ xadeps_intr.c XAdcPs_Config *XAdcPs_LookupConfig(ulé DevicelId)

XAdcPs_Config *CfgPtr = NULL;
u32 Index;

Figure 9. 26: Location of the Lookup function

From the project tree double click on xadcps_sinit.c file. Copy the lookup function
name in the helloworld.c file.

XAdcPs Config *XAdcPs LookupConfig(ulé DeviceId)

Now this function returns an XAdcPs_Config type. Therefore, one must declare a
variable at the beginning of the main function and equate this statement to the
variable. Also, a parameter of type ul6 Deviceld should be passed to this function.

Page 10 of 20

Chapter 9 | Joseph Attard

This parameter is obtained from:

File Edit Navigate Search Project Run Xilinx Window Help
TeitvyOviR RNBP@EE T v

Mm@ ® - gt & - -

& Project Explorer & BE|Y 7=0 g system.hdf [system.mss [Wisystemmss 2 *helloworld.c | xadcps_g.c =

= scutimer_v2_1 ~

& scuwdt v2_1 @%* CAUTION: This file is automatically generated by HSI.[]
& sdps_v3.3 2 #include "xparameters.h"

& standalone_v6_5 #include "xadcps.h”

= sysmon_v/_4

& tteps_v3 5 - i* .) .

& uartps_v3._5 */The configuration table for devices

= usbps v2_4

¥ & xadcps_v2_2 XAdcPs_Config XAdcPs_ConfigTable[XPAR_XADCPS_NUM_INSTANCES] =

v {
l¢ xadcps_g.c | {
| XPAR_PS?_XADC_G_DEVICE_ID,l

[n xadcps_hw.h
¢ xadcps_intr.c 1 -7 -

Figure 9. 27: Location of the ul6 Device ID

So, the proper statement should be:

XADC configPtr = XAdcPs_LookupConfig(XPAR PS7 XADC O_DEVICE_ID);

File Edit Navigate Search Project Run Xilinx Window Help
vyEittr O vrininiPR@EGE ¥ rideo- -

BE%|¥Y v=0 l@system.hdf (Wi system.mss [misystem.mss *helloworld.c

DrvE@el® -

& Project Explorer 2

@ scutimer_v2_1 A~ Unexpected errors may occur if the address mapping is changed
= scuwdt v2_1 after this function is invoked.
& sdps_v3_3

@return
& standalone_v6_5 - XST_SUCCESS if successful.

& sysmon_v7_4

= tteps_v3_5 @note The user needs to first call the XAdcPs_LookupConfig() API
Buan;v; 5 which returns the Configuration structure pointer which is
PSS passed as a parameter to the XAdcPs_CfgInitialize() API.
= ushps_v2_4
VRGPS VZZ | s
v = src | int XAdcPs_CfgInitialize(XAdcPs *InstancePtr, XAdcPs_Config *ConfigPtr,
@ xadcps_g.c u32 EffectiveAddr)
5 xadcps_hw.h {
[¢ xadcps_intr.c u32 RegValue;
[¢ xadcps_selftest.c e /*
[© xadcps sinit.c * Assert the input arguments.
“ _
Xil_AssertNonvoid(InstancePtr != NULL);
[xadcps.h B

Figure 9. 28: Location of the Initialization Function
Also, part of the initialization is the function in Figure 9.28.

It returns an int type, therefore this must be declared as a variable at the beginning
of the main function. Apart from that, there is an instance-pointer of type XAdcPs.
This must also be declared on top of the main function. The complete statement
should look like Code Snippet 9.1:

Page 11 of 20

= main()

int init_success;
XAdcPs XADCperipheral;

Chapter 9 | Joseph Attard

Variable declarations

XAdcPs_Config *XADC_configPtr; here

init_platform();

/* Initialise the XADC*/

{
)]

return XST_FAILURE;

XADC_configPtr = XAdcPs_LookupConfig(XPAR_PS7_XADC_@_DEVICE_ID);
init_success=XAdcPs_CfgInitialize(&XADCperipheral,XADC_configPtr,XADC_configPtr->BaseAddre
if(init_success != XST_SUCCESS)

Complete initialization

Code Snippet 9. 1: Complete Initialization statement

Notice the instance-pointer: &XADCperipheral

Self-Test

The self-test function is used to reset the XADC and to check whether the XADC is
healthy. This will return a variable of type int and therefore this must be equated to
another variable that should be declared at the beginning of the main function. This

function resides in:

H-iRE-%-Ritr0 - nnagB@eE s~ E@ve~ -

. & - = S - .
(5 Project Fxplorer & SR B lgsystem.hdf system.mss msystemumss [*helloworld.c | E xadcps_selftest.c
*

= scutimer_v2_1

& scuwdt v2_1

= sdps v3 3

= standalone_v6_5

& sysmon v7 4

e ttcps v3 5

= uartps_v3_ 5

= usbps_v2_4

v = xadcps_v2_2

¥ (= src
le xadcps_g.c
[xadeps_hw.h

[xadcps intr.c
le xadeps_selftest.c

code

~
*

* @param InstancePtr is a pointer to the XAdcPs instance.

*

* @return

* - XST_SUCCESS if the value read from the Alarm Threshold
* register is the same as the value written.

* - XST_FAILURE Otherwise

¥

* (@note This is a destructive test in that resets of the device
* performed. Refer to the device specification for the

* device status after the reset operation.

*

ok ok ok ok sk ok ok ok ok sk ok kK o ok Ok R sk ok ok sk ok Sk sk sk sk Sk K sk Sk kK ok ok K K o R 3 S O 3K 3K DR K 3K 0K R 3K 3K 3K KK 3K K KK K K OK
|> int XAdcPs_SelfTest(XAdcPs *InstancePtr) |

int Status;
13?2 ResValue:

Code Snippet 9. 2: Location of the Self-Test Function

Code Snippet 9. 3: Writing th If-test function in ..
lpp iting eSef Function i int init_success |STstatus;

XAdcPs XADCperipheral;
XAdcPs_Config *XADC_configPtr;
init_platform();

/* Initialise the XADC*/

XADC_configPtr = XAdcPs_LookupConfig(XPAR_PS7_XAl
init_success=XAdcPs_CfgInitialize(&XADCperiphera
if(init_success != XST_SUCCESS)

{

Y

/*Self test. This should also reset the XADC*/
STstatus=XAdcPs_SelfTest(&XADCperipheral);
if(STstatus != XST_SUCCESS)

{

3

return XST_FAILURE;

return XST_SUCCESS;

Page 12 of 20

Chapter 9 | Joseph Attard

FIERE S TR A RS- -] BRI e

act Explorer & B&lv v=no ‘msystem.hdf i systemumss W systemmss & *helloworld.c

> = scutimer_v2_1 ~ *
> = scuwdt_v2_1
? & sdpsv3.3 T Default safe mode (XADCPS_SEQ_MODE_SAFE)

*
*
& standalone_v6_5 * - One pass through sequence (XADCPS_SEQ_MODE_ONEPASS)
> & sysmon_v7_4 * - Continuous channel sequencing (XADCPS_SEQ_MODE_CONTINPASS)
*
*
*
*

* This function sets the specified Channel Sequencer Mode in the Configui
Register 1 :

> @ tteps_v3_5 - Single Channel/Sequencer off (XADCPS_SEQ_MODE_SINGCHAN)

P — _5 v; 5 - Simulataneous sampling mode (XADCPS_SEQ_MODE_SIMUL_SAMPLING)
ps.ve - Independent mode (XADCPS_SEQ_MODE_INDEPENDENT)

> = usbps_v2 4

¥ & xadcps_v2 2 * @param InstancePtr is a pointer to the XAdcPs instance.
v & src * @param SequencerMode is the sequencer mode to be set.
*

Use XADCPS_SEQ_MODE_* bits defined in xadcps.h.

7 (£ xadeps g.c * @return None.

> 8 xadcps_hw.h «
» [& xadeps_intr.c * @note only one of the modes can be enabled at a time. Please
» I8 xadeps_selftest.c * read the Spec of the XADC for further information about the

> [9 xadcps_sinit.c sequencer modes.

*

*
:
» [xadcps.h

oid XAdcPs_SetSequencerMode(XAdcPs *InstancePtr, u8 SequencerMode)

L& Makefile
Makefile f

T

. P Y B DOORN

Figure 9. 29: Location of the Sequence Function

Figure 9.29 shows the location of the sequencer function. The XADC has to be
stopped so that the configuration registers could be written to, to configure the XADC
block. The function resides in xadcps.c. The parameters are listed in the comments
list as illustrated in Figure 9.29.

/* now we stop the sequencer*/
XAdcPs_SetSequencerMode (&XADCperipheral, XADCPS_SEQ_MODE_SINGCHAN);

Code Snippet 9. 4: Stopping the XADC

As the comments in Figure 9.29 show, the XADC sequencer is stopped if the
parameter passed to the SetSequence() is SINGCHAN.

The XADC should be put into safe mode so that the configuration registers could be
changed:

/* we put the XADC in safe mode so that we can change the configuration registers*/
XAdcPs_SetSequencerMode (&XADCperipheral, XADCPS_SEQ MODE_SAFE);
|

Code Snippet 9. 5: XADC in Safe Mode

RQl®e >4 ~vERitrOo~viR DRADE G ¥ ~ifce~ -

act Explorer & B&lv =18 @ system.hdf [mh system.mss [k system.mss. *helloworld.c

> = scutimer_v2_1 ~ & f**

*

> = scuwdt v2_1 . R L. .
N d 33 * This function enables the alarm outputs for the specified alarms in
= SAps V3. * Configuration Register 1.
> = standalone_v6_5 *
> = sysmon_v7_4 * @param InstancePtr is a pointer to the XAdcPs instance.
> @ ttcps_v3_5 * @param AlmEnableMask is the bit-mask of the alarm outputs to be ¢
A * in the Configuration Register 1.
> & uartps_v3_5 . - - . P .

* Bit positions of 1 will be enabled. Bit positions of @ will bs
> & usbps v2 4 * disabled. This mask is formed by OR'ing XADCPS_CFR1_ALM_*_MASH
~ = xadcps_v2 2 * XADCPS_CFR1_OT_MASK masks defined in xadcps_hw.h.

v = src *
> B xadcps_g.c : @return None.
’ @Xachsjhw'h * @note The implementation of the alarm enables in the Configurat:
> 19 xadceps_intr.c * register 1 is such that the alarms for bit positions of 1 wil!
> [xadcps_selftest.c * be disabled and alarms for bit positions of @ will be enabled.
> [& xadcps sinit.c * The alarm outputs specified by the AlmEnableMask are negated
. before writing to the Configuration Register 1.
> |8 xadcps.h *

L& Makefile P f o f o f o f o of e o o o o o o o o o o o o o o o o o s o s o s o s o o Sk Sk Sk K F ko R o o f o f o O e o e 3K

Figure 9. 30: Location of the Alarms Function

Page 13 of 20

Chapter 9 | Joseph Attard

The first configuration is to disable the alarms. O will disable the alarms while 1 will
enable the alarms.

B S

ale -

Explorer &

= scutimer_v2_1

= scuwdt v2_1

= sdps_v3_3

= standalone v6_5

= sysmon_v/_4

= tteps v3 5

= uartps_v3_5

= usbps_v2_ 4

= xadcps_v2_2

v = src
l¢ xadcps_g.c
[5 xadcps_hw.h
l¢) xadcps_intr.c
[¢ xadcps_selftest.c

l¢| xadcps_sinit.c
I8 xadcps.h
[& Makefile
akefile
stem.mss

Cageen

TEBiFvO-iRiD DM@ S

/* Disable the alarms*/
XAdcPs_SetAlarmEnables(&XADCperipheral,exeeee);

Code Snippet 9. 6: Alarms Function

TR . —— e

& i

RCREIE SN 2

= = = -
B&|v 5 [@systemhdf [Wsystemumss | systemumss & *helloworld.c

SIS
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

@note
*

@param
@param

This function enables the specified channels in the ADC Channel Se
Sequencer Registers. The sequencer must be disabled before writing

regsiters.

InstancePtr is a pointer to the XAdcPs instance.

ChEnableMask is the bit mask of all the channels to be ei
Use XADCPS_SEQ CH__* defined

numbers.

Bit masks of 1 will

be disabled.
The ChEnableMask is a 32 bit
16 bit ADC Channel Selection

@return

in xadcps_hw.h to specify the Ci
be enabled and bit mask of @ wi!

mask that is written to the two
Sequencer Registers.

- XST_SUCCESS if the given values were written successfully
the ADC Channel Selection Sequencer Registers.
- XST_FAILURE if the channel sequencer is enabled.

None

e e ok ofe e ok ofe s ok ofe ok o e ok o e ok ofe s ok ofe s ok ofe ok o ofe ok o s ok e s ok ofe sk o ok sk o ofe ok o o ok o sk ok o sk ok ofe sk o ofe sk o ofe ok o sk ok e sk ok e ok ke :

Iint XAdcPs_SetSeqChEnables(XAdcPs *InstancePtr, u32 ChEnableMask) |

i

Figure 9. 31: Location of Channel Enable Function

Figure 9.31 shows the location where the function to enable the individual channels
is located. The comments give a hint on how to identify the parameters that could be
passed to this function and their location. This function returns a value of type int
and therefore this must be declared again at the beginning of the main(). The
parameters are listed in the Figure 9.32 and can be found in xadcps_hw.h file.

i@ | = @it vyOviun Di2BE & ¥ vide e

Explorer
= scutimer_v2_1
@ scuwdt_v2_1
@ sdps_v3_3
i standalone_v6_5
@ sysmon_v7_4
= ttcps_w3_5
= uartps_v3_5
= usbps_v2_4
& xadeps_v2_2
~ = src
¢ xadcps_g.c
€l xadcps_intr.c
[xadcps_selftest.c
[8 xadeps_sinit.c
¥ xadeps.c
5 xadcps.h
[& Makefile
lakefile
rstem.mss

—_app

B&|¥T o0 '@ system.hdf

“ * @f
*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

XADCPS_SE
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS
XADCPS,
XADCPS,
XADCPS,
XADCPS,
XADCPS,

‘i system.mss

Q_CH
SEQ_CH_VCCPINT
SEQ_CH_VCCPAUX
SEQ_CH_VCCPDRO
SEQ_CH
SEQ_CH_VCCINT
SEQ_CH_VCCAUX
SEQ_CH_VPVN

SEQ_CH_VREFP ©xeeeeleee
SEQ_CH_VREFN ©xeeee2eee
SEQ_CH_VBRAM ©xeeee4eee
SEQ_CH_AUX@® ©x000100080
SEQ_CH
SEQ_CH_AUX@2 ©x000400080
SEQ_CH_AUX@3 ©xe0080000
SEQ_CH_AUX@4 ©xe010e000
SEQ_CH_AUX@S 0xee200000
SEQ_CH
SEQ_CH
SEQ_CH_AUX@S ©x01000000
SEQ_CH_AUX@9 ©x02000000
SEQ_CH_AUX1@ ©x04000000
SEQ_CH_AUX11l @xes8eeeeee
XADCPS SEO CH AUX12 @x10e0eee

‘i system.mss

oxeeeoesee

AUXO1l exeeezeoeee

AUXe6 exeedo0008
AUXO7 ©oxeosoeeoe

Figure 9. 32: Channel Parameter List

L9 *helloworld.c

CALIB exeeeeeeel /**< ADC Calibration Channel */
exeeeeeeze /**<
exeeeeeedo /**<
exeeeeeese /**<
TEMP ©xeeeeelee /**< On Chip Temperature Channel */
exeeeee2ee /**< VCCINT Channel */

@xeeeeed4ee /**< VCCAUX Channel */

JEEe

YEL P,
ey
/**<
/EE
FAS
/S E*
/Hr<
/Hr<
e
JE
e
JEEc
/<
/**e
e
S HF* e

VCCPINT, Zyng Only */
VCCPAUX, Zyng Only */
VCCPDRO, Zyng Only */

VP/VN analog inputs Channel */
VREFP Channel */

VREFN Channel */

VBRAM Channel, 7 series */
1st Aux Channel */

2nd Aux Channel */

3rd Aux Channel */

4th Aux Channel */

S5th Aux Channel */

6th Aux Channel */

7th Aux Channel */

8th Aux Channel */

9th Aux Channel */

1eth Aux Channel */

11th Aux Channel */

12th Aux Channel */

13th Aux Channel */

The channels’ enable function should tally with the hardware we enabled in the
XADC wizard which is part of the hardware-block-design. This is shown in Figure
9.33 again, on the next page, so that the student will not get confused.

Page 14 of 20

1
| 0 Documentation

IP Location

Show disabled ports

=4 s_axi_lte
I+ v
M+ vaux1
M+ vauxs

= s_axi_aclk
=4 5_avi_aresetn

p2into it
user_temp_alarm _out
vecirs_alamm_out
vecaux_alamm _out
vecpint_alam_out
voopaux_alamm_out
veeddro_slam_out
ot _out
channal_out[4:0]
e0c_out

alarm_owt

eos_out

busy_out

Component Name xadc_wiz_0

Basic | ADC Setup | Alarms

Channel Sequeni

CALIBRATION

TEMPERATURE

VCCINT

VCCAUX

VCCBRAM

VCCPINT

VCCPAUX

VCCDDRO

VPN

VREFP

Channel Enable Averag

Chapter 9 | Joseph Attard

Figure 9. 33: ADC channels

Again, the AUXVpO1/AUXVnOl and
Vn8AUXVp08/AUXVn08 are not shown
in Figure 9.33, however they are
included so make sure that in the
function parameters, this will be
included!

/*now we will enable the channels we would like to monitor

* The enabled channels should tally with what we have enabled in the
* XADC wizard forming part of our hardware.*/
ch_status=XAdcPs_SetSeqChEnables(&XADCperipheral, XADCPS_SEQ CH_CALIB |

if(ch_status != XST_SUCCESS)

{
3

return XST_FAILURE;

XADCPS_SEQ_CH_TEMP | XADCPS_SEQ_CH_VPVN | XADCPS_SEQ_CH_VBRAM |
XADCPS_SEQ_CH_AUX@1 | XADCPS_SEQ_CH_AUX@8);

Code Snippet 9. 7: Syntax to Enable the ADC channels

This time, the Processing System will sample both internal parameters and also
external ADC channels in the same program! Now, the sequence by which the
channels will be sampled has to be configured as wel. The function that takes care
of this resides in xadcps.c file. The parameters can be found in xadcps_hw.h file.

Navigdle Dearcn Froject [un ANNX VWIndow mep

@ ®

t Explorer =

LY ity O viniDiRPA@EGE Y v

= scutimer_v2_1
= scuwdt_v2_1
& sdps_v3_3
= standalone_v6_5
&= sysmon_v7_4
= tteps_v3_5
= uartps_v3_5
& usbps_v2_4
‘= xadcps_v2_2

¥ = src

8 xadecps_g.c

v xadcps_hw.h

8 xadcps_intr.c

l2 xadcps_selftest.c

lg xadcps_sinit.c

I8 xadcps.h
L& Makefile

Aakefile
vstem.mss

S&|Y v =0

P *

*
*
*
*
E
*
E
*
*
*
*
*
*
E
*
E
*
*
*
*

@ system.hdf

@param
@param

@note

s IRERCER 4 -

i system.mss

l¢ *helloworld.c % xadeps_hwl

[Hh system.mss

This function sets the Analog input mode for the specified channels
Channel Analog-Input Mode Sequencer Registers. The sequencer must be
before writing to these regsiters.

InstancePtr is a pointer to the XAdcPs instance.
InputModeChMask is the bit mask of all the channels for wh

the input mode is differential mode. Use XADCPS_SEQ_CH_ * defi
in xadcps_hw.h to specify the channel numbers. Differential
input mode will be set for bit masks of 1 and unipolar input
mode for bit masks of @.

The InputModeChMask is a 32 bit mask that is written to the tw
16 bit ADC Channel Analog-Input Mode Sequencer Registers.

@return

- XST_SUCCESS if the given values were written successfully to
the ADC Channel Analog-Input Mode Sequencer Registers.
- XST_FAILURE if the channel sequencer is enabled.

None

*

Iint XAdcPs_SetSeqInputMode (XAdcPs *InstancePtr, u32 InputModeChMask)

1

Figure 9. 34: Location of the Sampling Sequence Function

It is a good idea to copy the parameters of the channel enables function in the
function shown in Figure 9.34.

Page 15 of 20

Chapter 9 | Joseph Attard

/*Now we need to set which channels will be sampled in sequence*/

SegModeStatus=XAdcPs_SetSeqInputMode (&XADCperipheral, XADCPS_SEQ CH_CALIB |
XADCPS_SEQ_CH_TEMP | XADCPS_SEQ CH_VPVN | XADCPS_SEQ CH_VBRAM |
XADCPS_SEQ_CH_AUX@1 | XADCPS_SEQ_CH_AUX@8);

if(SeqModeStatus != XST_SUCCESS)

{
}

return XST_FAILURE;

Code Snippet 9. 8: Sampling Sequence

The sampling will start from the first parameter. Once its finished and it stores its
digital equivalent in the respective status register, the XADC samples the next
channel according to the list of parameters shown in Code Snippet 9.8. It continues
to sample the channels one after the other until all the channels are sampled. The
XADC will start all over again if the next function is included.

/* Before starting to sample data we will set the XADC to continuously
* sample the channels*/
XAdcPs_SetSequencerMode(&XADCperipheral, XADCPS_SEQ_MODE_CONTINPASS);

Code Snippet 9. 9: Function to sample continuously

The get data() is used to get the 12-bit decimal equivalent of the quantity you are
monitoring. Its location is shown in Figure 9.35.

UJ_BJ‘QV @ Tty vyiuRRN2PE G ¥y b -

t Explorer & E&ly =@ wsystem.hdf [Wsystem.mss (Wsystemmss @ *helloworld.c | [E xadcps.c # %helk
= scutimer v2 1 ~ J RO KK K KK KK K KR ROK R KKK R R OROK K o K K oo KK
- - 7/**
= scuwdt_v2_1 .
@ sdps v3 3 * Get the ADC converted data for the specified channel.
= standalone_v6_5 *
& sysmon_v7_4 * @param InstancePtr is a pointer to the XAdcPs instance.
& ttepsv3_5 * @param Channel is the channel number. Use the XADCPS_CH_* de¢
- * the file xadcps.h. -
& uartps_v3_5 * The valid channels are
@ usbps_v2_4 * -9 to 6
" = xadcps_v2_2 * - 13 to 31
¥ & sIC * . .
B xadoos a.c * @return A 16-bit value representing the ADC converted data f¢
ps.g- * specified channel. The XADC Monitor/ADC device guarantee:
5 xadcps_hwh * a 10 bit resolution for the ADC converted data and data :
¢ xadcps_intr.c * 10 MSB bits of the 16 data read from the device.
[8 xadcps_selftest.c *
& xadcps sinit.c * @note The channels 7,8,9 are used for calibration of the d¢
= * hence there is no associated data with this channel.
[¢ xadcps.c .
@Xadcps.h kkck Rk kR kkk Rk Rk kkkkkkkkkkk Rk kkkkkkkk Rk kR Rk Rk kkkokkkokk Rk R kkkkkkk Rk k>
L& Makefile “ulé XAdcPs_GetAdcData(XAdcPs *InstancePtr, u8 Channel) |
Aakefile 1

Figure 9. 35: Location of the GetADCData function

The parameters for the above function are stored in xadcps.h and are shown Figure
9.36.

Page 16 of 20

Chapter 9 | Joseph Attard

|® >4~ E@itvOoviR DiX2PA@E G ¥ vidcor v

! & - = . = .
xplorer B&|Y O lgsystemhdf systemmss (Wsystemmss [helloworldc [xadcpsc ® helloworld.c

= scutimer_v2_1 ~
§5cuwdtvz 1 /************************** constant Defiﬂitions ****************************/

> sdps_v3_3
= standalone_v6_5 5 [*k
> sysmon_v7_4 * @name Indexes for the different channels.
= tteps_v3_5 :/@{
> uartps.v3.5 #tdefine XADCPS_CH_TEMP @xe /**< On Chip Temperature */
» usbps v2_4 #define XADCPS_CH_VCCINT @xl /**< VCCINT */
= xadcps_v2_2 #define XADCPS_CH_VCCAUX ax2 /**< VCCAUX */
© &= src #define XADCPS_CH_VPVN ex3 /**< VP/VN Dedicated analog inputs */
@ xadeps g.c #define XADCPS_CH_VREFP @x4 /**< VREFP */
B xadcps hwh #define XADCPS_CH_VREFN @x5 /**< VREFN */
P*_ h #define XADCPS_CH_VBRAM Ox6 /**< On-chip VBRAM Data Reg, 7 series */
[& xadcps_intr.c #tdefine XADCPS_CH_SUPPLY_CALIB @x@7 /**< Supply Calib Data Reg */
[xadcps_selftest.c #define XADCPS_CH_ADC_CALIB @x@8 /**< ADC Offset Channel Reg */
[8 xadcps_sinit.c #define XADCPS_CH_GAINERR_CALIB @x@89 /**< Gain Error Channel Reg */
#define XADCPS_CH_VCCPINT @xeD /**< On-chip PS VCCPINT Channel , Zyng */
#define XADCPS_CH_VCCPAUX @x@E /**< On-chip PS VCCPAUX Channel , Zyng */
- #define XADCPS_CH_VCCPDRO @x@F /**< On-chip PS VCCPDRO Channel , Zyng */
Lo Makefile #define XADCPS_CH_AUX_MIN 16 /**< Channel number for 1st Aux Channel */
kefile #define XADCPS_CH_AUX_MAX 31 /**< Channel number for Last Aux channel */
tem.mss

Figure 9. 36: Location of the parameters for the GetADCData Function

One other thing that needs to be clarified is the fact that get _data() is returning a 16
bit variable, however it has to be stored in a 32 bit variable. This is because the built-
in macro converts the 12-bit data from the ADC into either voltage or temperature
and the macro itself takes care to do the conversion, which is hidden from the user.

SvEvEitrOriRinRPA@ES I gECE Y v

& <= . : -
plorer = B%|v B [msystemhdf (W system.mss [isystem.mss helloworld.c xadcps.e T helloworld.c

scutimer_v2_1 A T A
scuwdt_v2_1 -) .
d 33 * This macro converts XADC Raw Data to Temperature(centigrades).
sdps_v3_° %
standalone_v6_5 * @param AdcData is the Raw ADC Data from XADC.
sysmon_v/_4 *
tteps_v3_5 * @return The Temperature in centigrades.
I *
uartps v3.5 * @note C-Style signaturae:
usbps v2 4 * |floa‘t XAdcPs_RawToTemperature(u32 AdcData);
xadcps_v2_2 * —_——
& src ***/

-#define XAdcPs_RawToTemperature(AdcData)

[@ xadcps_g.c \
((((float)(AdcData)/65536.6F)/0.80198421639F) - 273.15f)

B xadcps_hw.h
[8 xadeps_intr.c J L T T
[9 xadcps_selftest.c © [**

*

xadcps_sinit.c
* This macro converts XADC/ADC Raw Data to Voltage(volts).
*

* @param AdcData is the XADC/ADC Raw Data.
*

Figure 9. 37: Location of the built-in macro that converts raw data into temperature

xplorer % =E%lv "=0 lmsystemhdf lisystem.mss W systemmss D helloworld.c [@xadeps.c @ helloworld.c

= scutimer_v2_1 ~ * float XAdcPs_RawToTemperature(u32 AdcData);
x

= scuwdt v2_1
- - ***/

=sdpsv3_3 “#define XAdcPs_RawToTemperature(AdcData) \
= standalone_v6_5 ((((float) (AdcData)/65536.0f)/8.80198421639f) - 273.15F)
= sysmon_v/_4
/**/

= tteps_v3_5 r
= uartps v3 5 N i
= usbps v2 4 This macro converts XADC/ADC Raw Data to Voltage(volts).
= xadcps_v2_2
v & src @param AdcData is the XADC/ADC Raw Data.

4 xadeps_g.c

18 xadcps_hw.h
[9 xadeps_intr.c

*
*
*
*
* @return The Voltage in volts.
*
*
*

@note C-Stylg signaturg:

[4 xadcps_selftest.c |'F10at XAdcPs_RawToVoltage(u32 AdcData);

s

L9 xadcps_sinit.c
***/

“#define XAdcPs_RawToVoltage(AdcData) \
((((float)(AdcData))* (3.8f))/65536.08f)

Figure 9. 38: Location of the built-in macro that converts raw data into voltage

Page 17 of 20

Chapter 9 | Joseph Attard

The parameter list provided in the header file did not include all the auxiliary channel
definitions and therefore the author had to include them manually. UG480, states
that auxiliary channel O has an address of 16. The addresses continue to increment
such that channel 15 has an address of 31. Figure 9.39 shows the definition
statements that where included by the author in the header file. The list is shown in

the red box.

HUETLMNE ARAULFD_LO_ 1 CMF uxg SR UN LIILp TeEmperaLure vy
#define XADCPS_CH_VCCINT ex1 /**< VCCINT */
#define XADCPS_CH_VCCAUX ex2 /*¥< VCCAUX */
#define XADCPS_CH_VPVN @x3 /**< VP/VN Dedicated analog inputs */
#define XADCPS_CH_VREFP ex4 /**< VREFP */
#define XADCPS_CH_VREFN ex5 /**< VREFN */
#define XADCPS_CH_VBRAM Ox6 /**< On-chip VBRAM Data Reg, 7 series */
#define XADCPS_CH_SUPPLY_CALIB ©x@7 /**< Supply Calib Data Reg */
#define XADCPS_CH_ADC_CALIB @xe8 /**< ADC Offset Channel Reg */
#define XADCPS_CH_GAINERR_CALIB ©x09 /**< Gain Error Channel Reg */
#define XADCPS_CH_VCCPINT @x@D /**< On-chip PS VCCPINT Channel , Zyng */
#tdefine XADCPS_CH_VCCPAUX ©x@E /**< On-chip PS VCCPAUX Channel , Zyng */
#define XADCPS_CH_VCCPDRO @x@F /**< On-chip PS VCCPDRO Channel , Zyng */
#define XADCPS_CH_AUX_MIN 16 /**< Channel number for Aux@@ Channel */
#define XADCPS_CH_AUXe1l 17 /**< Channel number for Aux@l Channel */
#define XADCPS_CH_AUX©2 18 /**< Channel number for Aux@2 Channel */
#define XADCPS_CH_AUXe3 19 /**< Channel number for Aux@3 Channel */
#define XADCPS_CH_AUXe4 20 /**< Channel number for Aux@4 Channel */
#define XADCPS_CH_AUXe5 21 /**< Channel number for Aux@5 Channel */
#define XADCPS_CH_AUXe6 22 /**< Channel number for Aux@6 Channel */
#define XADCPS_CH_AUXe7 23 /**< Channel number for Aux@7 Channel */

§ Fdefine XADCPS_CH_AUXes8 24 /**< Channel number for Aux@8 Channel */
I
#define XADCPS_CH_AUX_MAX 31 /**< Channel number for Last Aux channel */

Figure 9. 39: Adding the channel numbers manually

Since the definition statements where included manually by the author, it is
imperative to either click on Save all or make sure that the header file is saved before
saving the actual C file.

The following is the get_data() together with the macros in the while (1) loop:

while(1)
{

ADC_valueTemp=XAdcPs_GetAdcData(&XADCperipheral, XADCPS_CH_TEMP);

temp=XAdcPs_RawToTemperature(ADC_valueTemp);

ADC_valueVp=XAdcPs_GetAdcData(&XADCperipheral, XADCPS_CH_VPVN);
Vp=XAdcPs_RawToVoltage(ADC_valueVp);

ADC_valueVBRAM=XAdcPs_GetAdcData(&XADCperipheral,

VBRAM=XAdcPs_RawToVoltage(ADC_valueVBRAM);

ADC_valueAux®1l=XAdcPs_GetAdcData(&XADCperipheral,

Auxel=XAdcPs_RawToVoltage(ADC_valueAuxel);

ADC_valueAux@8=XAdcPs_GetAdcData(&XADCperipheral,

Auxe8=XAdcPs_RawToVoltage(ADC_valueAuxes);

printf("Internal temperature: %f\n\r",temp);
printf("Vp voltage: %f\n\r",vp);
printf("VBRAM voltage: %f\n\r",VBRAM);
printf("Auxel voltage: %f\n\r",Aux8l);
printf("Auxe8 voltage: %f\n\r",Auxes);

1ld

VAWM

Code Snippet 9. 10: Sampling the ADC channels

XADCPS_CH_VBRAM) ;

XADCPS_CH_AUX@1);

XADCPS_CH_AUX@S8) ;

Page 18 of 20

Chapter 9 | Joseph Attard

Print() must be changed to printf() statement because this will generate an error of
too many parameters. Create a boot image file and copy it to SD card. What follows
is the whole code:

helloworld.c: simple test application

PS7 UART (Zyng) is not initialized by this application, since

*

"

* This application configures UART 1655@ to baud rate 96ee.
*

* bootrom/bsp configures it to baud rate 115200

*

*this project will attempt to control multiple ADC inputs
*such as some of the internal parameters, Vp and also Auxl

* | UART TYPE BAUD RATE |

* uartns556 9600
* uartlite Configurable only in HW design
ps7_uart 115200 (configured by bootrom/bsp)

#include <stdio.h>
#include "platform.h"
#include "xil_printf.h"
#include "xadcps.h"

void delay (void);

=int main()
{

int init_success,STstatus,ch_status,SeqModeStatus;
u32 ADC_valueTemp,ADC_valueVp,ADC_valueVBRAM,ADC_valueAux®l,ADC_valueAux@s;
float temp,Vp,VBRAM, Aux©l,Auxes;
XAdcPs XADCperipheral;
XAdcPs_Config *XADC_configPtr;
init_platform();

/* Initialise the XADC*/

XADC_configPtr = XAdcPs_LookupConfig(XPAR_PS7_XADC_@ DEVICE_ID);
init_success=XAdcPs_CfgInitialize(&XADCperipheral,XADC_configPtr,XADC_configPtr->Basehc
if(init_success != XST_SUCCESS)

{

}

/*Self test. This should also reset the XADC*/
STstatus=XAdcPs_SelfTest(&XADCperipheral);
if(STstatus != XST_SUCCESS)

{

}

return XST_FAILURE;

return XST_SUCCESS;

/*Self test. This should also reset the XADC*/
STstatus=XAdcPs_SelfTest(&XADCperipheral);
if(STstatus != XST_SUCCESS)

{

b

return XST_SUCCESS;

/* now we stop the sequencer*/
XAdcPs_SetSequencerMode (&XADCperipheral, XADCPS_SEQ_MODE_SINGCHAN);

/* we put the XADC in safe mode so that we can change the configuration registers*
XAdcPs_SetSequencerMode (&XADCperipheral, XADCPS_SEQ_MODE_SAFE); Line:

/* Disable the alarms*/
XAdcPs_SetAlarmEnables(&XADCperipheral,exeeee);

/*now we will enable the channels we would like to monitor
* The enabled channels should tally with what we have enabled in the
* XADC wizard forming part of our hardware.*/
ch_status=XAdcPs_SetSeqChEnables(&XADCperipheral, XADCPS_SEQ CH_CALIB |
XADCPS_SEQ_CH_TEMP | XADCPS_SEQ_CH_VPVN | XADCPS_SEQ_CH_VBRAM |
XADCPS_SEQ_CH_AUX@1 | XADCPS_SEQ_CH_AUXe8);

Page 19 of 20

if(ch_status != XST_SUCCESS)

{
}

return XST_FAILURE;

Now we need to set which channels will be sampled in sequence/
SegModeStatus=XAdcPs_SetSeqInputMode (&XADCperipheral, XADCPS_SEQ CH_CALIB |
XADCPS_SEQ_CH_TEMP | XADCPS_SEQ CH_VPVN | XADCPS_SEQ CH_VBRAM |

XADCPS_SEQ_CH_AUX®1 | XADCPS_SEQ_CH_AUX@S8);

if(SegModeStatus != XST_SUCCESS)

{
}

return XST_FAILURE;

/* Before starting to sample data we will set the XADC to continuously
* sample the channels*/
XAdcPs_SetSequencerMode (&XADCperipheral, XADCPS_SEQ MODE_CONTINPASS);

while(1)

{

¥

ADC_valueTemp=XAdcPs_GetAdcData(&XADCperipheral, XADCPS_CH_TEMP);

temp=XAdcPs_RawToTemperature(ADC_valueTemp);

ADC_valueVp=XAdcPs_GetAdcData(&XADCperipheral, XADCPS_CH_VPVN);

Vp=XAdcPs_RawToVoltage(ADC_valueVp);

ADC_valueVBRAM=XAdcPs_GetAdcData(&XADCperipheral,
VBRAM=XAdcPs_RawToVoltage (ADC_valueVBRAM);

ADC_valueAux@1l=XAdcPs_GetAdcData(&XADCperipheral,
Aux@1l=XAdcPs_RawToVoltage(ADC_valueAuxel);

ADC_valueAux08=XAdcPs_GetAdcData(&XADCperipheral,
Aux@8=XAdcPs_RawToVoltage (ADC_valueAux@g);

printf("Internal temperature: %f\n\r",temp);
printf("Vp voltage: %f\n\r",Vp);
printf("VBRAM voltage: %f\n\r",VBRAM);
printf("Auxel voltage: %f\n\r",Auxel);
printf("Auxe8 voltage: %f\n\r",Auxes);
delay();

cleanup_plattorm();
return ©;

void delay (void)

{

for(unsigned i=0;i<10000000;i++)
{

¥

XADCPS_CH_VBRAM) ;

XADCPS_CH_AUX@1) ;

XADCPS_CH_AUX@S) ;

Chapter 9 | Joseph Attard

So, the focus of this chapter was to show how to sample internal parameters, the
dedicated ADC channel and two auxiliary ADC channels from the Processing System.
During the discussion, the short comings encountered by the author were
highlighted and their workaround explained. It must be said that the voltage and
temperature macros offered by Xilinx are not so reliable and one should write his/her
own functions to convert to temperature and voltage. In the next chapters, the XADC
will be sampled from the Programmable Logic part.

Page 20 of 20

Chapter 10 | joseph attard

Monitoring two ADC channels with data simultaneously shared between the
PS and PL parts of the Zynq 7

Introduction

In this chapter, two external analogue inputs will be monitored by both the
Processing System part and the Programmable Logic part of the Zynq 7. It will be
shown how easy it is to use the XADC block simply because the advanced hardware
included in the XADC makes life so much easier for the design engineer!

Creating a Vivado Project

There are sections in chapters 1 and 2 that explain in detail how to create a Vivado
project both for the PL part and also for the PS part, so this part of the document will
be skipped.

After creating the project and also creating a VHDL source file as part of the project,
one should wait for Vivado to update as shown in Figure 10.1 below:

PROJECT MANAGER - Multiple_XADC_input_data_shared_PS_PL

Sources g i Project Summi

Q = = + |UpdatingU Ql _ .

v Design Sources (1 ~
@_XADC_PL._ driver/Behavioral) (XAC g v Projectname
Hierarchy Libraries Compile Order Project locati(

Product famil

Figure 10. 1: Wait for Vivado to Update

PROJECT MANAGER - Multiple_XADC_input_data_shared_PS_PL

Sources

Q =z | ¢ <+ o
e Design Sources (1

E>h 4 XADC_PL_driver(Behavioral) (XADC_PL_drivervhd)

b Constraints
> Simulation Sources

Figure 10. 2: Location of the VHDL Module

Figure 10.2 shows the location of the VHDL module within the project. Double click
on it to edit it.

The XADC module will be configured to run in continuous mode, therefore it will
output the ADC result in 12-bit digital form, together with the corresponding
channel-address. Since the main objective of this exercise is to learn how to configure
the XADC block and interface it with both PS and PL parts of the Zynq 7, the VHDL
module will output the raw 16-bit result directly to the LEDs. It is known that the
XADC result resides between bit 4 and bit 15 and therefore some form of processing
is needed to obtain the actual value as a decimal number! The Zynq Processing
system will do its own processing (shifting to the right by 4 bits) on the XADC data
while the VHDL module will do its own separate processing. Code snippet 10.1 shows
the VHDL code to implement a simple multiplexer because the objective of this

1]32

Chapter 10 | joseph attard

project is to make sure that the XADC data is available for both PS and PL at the
same time! Also note how simple concept used to implement shifting of data in VHDL!

Q N X B Kb

/I B Q

: out STD_LOGIC VECTOR (€ downto 0);

: out std_logic_vector(é downto 0);
: in std_logic_vector(l5 downto 0);
ut : out STD_LOGIC VECTOR (11 downto 0);

ADCchann T N STD_IDGIC_VECTDR (4 downto 0)):
end XADC PL driver;
architecture Behavioral of XADC PL driver is
signal internalADCresult : std logic_vector(ll downto 0);

begin

1 channeladdr_out <= "00" & ADCchannel;

ADCresult_out

<= ADCresult_in (15 downto 4) when ADCchannel =

ADCresult_in (15 downto 4) when ADCchannel =
"000000000000";

"goo11"
"11000"

Code Snippet 10. 1 VHDL
module

Note: One can
change the names of
the IO terminals of
the VHDL module
any time.

A simple method to
output digital results
to an output port,
one can use a
multiplexer (MUX).

else
else

By using a
multiplexer, there is

no issue of timing constraints or worrying that the XADC block is not in sync with
the VHDL module because the multiplexer used will use the channel address of the

analogue input as the select bits to select which digital data it will be output.

For this experiment a custom-made development board designed by the author
was connected to the cape IO board by MYIR. It was fully isolated from both the
inputs and the outputs, to make sure that the pins of the Zynq 7 will never get
damaged. This dev-board extension had 18 LEDs driven by opto-transistors, 4 pre-
set pots, 4 push-to-make switches, 4 slide switches and a single seven segment
display.

Save the VHDL module and create a block design.

Note: One could start from the block diagram and then write the VHDL code after.
There is no priority!

Flow Navigator C 3 B S PROJECT MANAGER - Multiple_XADC_input_data_shared_PS_PL
v PROJECT MANAGER N
Sources ?2 00X Project Summary < XADI
£# Settings
Q = & + o G/Z-TURN_V12_20171030/Zy
Add Sources
v Design Sources (1
Language Templates . | # Create Block Design X
wii& XADC_PL_driver(Behavig b
IP Catalo
h g > = Constraints Please specify name of block design.
> Simulation Sources (1 ‘ i
Vv IP INTEGRATOR
E
Create Block Design | (1) Design name: BlockDesign <: @ I i
- — N - B
| ([o B R Directory. & <Local to Project> v B
P N Hierarchy Libraries Compile
Specify source set: Design Sources v
Tcl Console Messages og
v SIMULATION .
: e @ e c>
Run Simulation Q = = "*' @
Nama [a traint:

Figure 10. 3: Creating a Block Design

Page 2132

Chapter 10 | joseph attard

Click on “create a Block Design”. In the following pop up window give a name to the
block design and then click on OK.

Adding the Zynq PS system

The Zynq PS system must be added to your block design because it will download
the .bit file of the VHDL part of the project to the FPGA part of the Zynq SoC. Apart
from that, in this project, the Zynq 7 Processing System will be used to monitor in
parallel the ADC data from XADC.

Diagram X XADC_PL_driver.vhd

LY]
"

€y
+

H C

Figure 10. 4: Adding an IP to the Block Design

To add an IP on the canvas, one can
either hover the mouse on the + sign in
the middle or on the + sign that is part
of the menu. Click on either one of
them and a new pop up window pops

up.

AddIP

Figure 10. 5: Calling the IPs

Search: zynq| (1) (1 match) ; .
Write the name of the IP in the field

i ZYNQ7 Processing System (2) provided and double click on it to add it
to the block design.

Diagram X XADC_PL_driver.vhd X | Address Editor

@ AN Q + F C o Figure 10. 6: Zynq PS is part of the Block
» :)) : <:| Design
/¥ Designer Assistance available. Run Block Automation

Click on Run Block
processing_system7_0

- . Automation
DR + |||

- FIXED_IO +|||

M_AXI_GP0_ACLK ZYNQ M :é-:iKGZTK:-
FCLK_RESETO_N

ZYNQ7 Processing System

Page 31|32

Chapter 10 | joseph attard

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left o display its
configuration options on the right [

Qlz|e Descripton Figure 10. 7: Leave all the Presets

v 7/ Al mation (1 f 1 sel)
Actoeion (1 ok of 1 selectsd This option sets the board preset on the Processing System. All current properties will be

¥ ¥ processing_system7_0 overwritten by the board preset This action cannot be undone. Zynq7 block automation
applies current board preset and generates external connections for FIXED_IO, Trigger
and DDR interfaces

NOTE: Apply Board Preset will discard existing IP configuration - please uncheck this box
if you wish to retain previous configuration

Instance: /processing_system7_0
Options

Make Interface External. FIXED_IO, DOR

Aok Pt Make Sure this is checked

Cross Trigger In: Disable v

Cross Trigger Out Disable v

processing_system7_0

r \

DDR + ||j===={"> DDR
FIXED_IO + |||===={> FIXED_IO
nco +||
ll+ 8.Ax_+Po_reo_cra UsBIND_0 +||| Figure 10. 8: Connect the AXI clocks to the
Gl S_AXI_HPO M_AXI_GPO + i Zynqg PS

: -
— MMAXI GPO_ACLK ZYNQ TTCO_WAVEQ_OUT

TTCO_WAVE1_OUT
S_AXI_HPO_ACLK |
TTCO_WAVE2 OUT
FCLK_CLKO
FCLK_CLK1

FCLK_RESETO_N

ZYNQ7 Processing System

For this project, two AXI blocks will be used, one to interface the XADC block with
the Zynq Processing System and one to send the processed XADC result to the VHDL
module. The XADC will output the XADC result in 16 bit format together with the 6
bit channel address. The other AXI block is used to interface the Processing System
with the Programmable Logic fabric. Another way to add an IP block is shown in
Figure 10.9

1 Figure 10. 9: Adding another IP block

To add another IP, right-click on the canvas and select

Q. search.. ' Add IP from the menu.
W SelectAll
+ AddIP.. Cri+l

Add Module...
IP Settings...

Where there is an AXI block, there should also be an AXI interconnect block. This
ensures maximum data rate transfer between the Zynq Processing System and the
Programmable Logic in the block-design.

Page 4132

Chapter 10 | joseph attard

Adding the AXI interconnect Block

Figure 10. 10: Adding the AXI interconnect Block

Search: © Axlinterconnectl<:| (5 matches)

¥ AHB-Lite to AXI Bridge

4F AXl4-Stream Interconnect
4F AXI AHBLite Bridge

4F AXI APB Bridge
4F AXl Interconnect

axi_interconnect_0

\
+ S00_AXI

ACLK
ARESETN
S00_ACLK .
e MOD_AXI 43
S00_ARESETN 3t :
MO1_AXI + fi

MO0_ACLK
MOO_ARESETN

MO1_ACLK
MO1_ARESETN

TR

,
-

AXI Interconnect

In the field, write AXI interconnect and then double-click on it from the list.

AXI Interconnect (2.1)

© Documentation IP Location

Component Name axi_interconnect_0

Figure 10. 11: Change the AXI interconnect
block settings

AXI interconnect must have
two master and one slave
interface for this application.

Top Level Settings Slave Interfaces Master Interfaces
Number of Slave Interfaces 1
Number of Master Interfaces | 2
Interconnect Optimization Strategy 1 <:|
2
3

With the adjacent settings, two AXI

GPIO blocks could be connected to the AXI

interconnect. Each AXI GPIO block has two channels. In the first AXI GPIO block,
both channels will be used as input channels while the second AXI GPIO will have

its channels configured as outputs.

AXI Interconnect (2.1)

© Documentation IP Location

Component Name axi_interconnect_0
Top Level Settings Slave Interfaces

Number of Slave Interfaces
Number of Master Interfaces

Interconnect Optimization Strategy

Master Interfaces

1 v
2 v
Custom v

Page 5]32

FIXED_IO + |
nco +||| axi_interconnect_0
USBIND 0 +]|
M_AXI_GPO + i3 il s00_AXI
TTCO_WAVEO_OUT b= —~ ACLK
TTCO_WAVE1_OUT = ARESETN
TTCO_WAVE2_OUT = S00_ACLK "
FCLK_CLKD h=—y S00_ARESETN 3% :gf‘ﬁ: :
FCLK_CLK1 = MOO_ACLK - "
FCLK_RESETO_N MOO_ARESETN
T / MO1_ACLK
MO1_ARESETN

axi_gpio_1

AXI Interconnect

Chapter 10 | joseph attard

Figure 10. 12: Connecting
the AXI interconnect block
to the Zynq PS

Figure 10.12
shows how to
connect the data
bus from the
Processing System

to the AXI interconnect. It is advisable to include the Processor System Reset block to
reduce the amount of warnings while synthesizing the design.

Include the Processing System Reset

Search: | Q.- reset <:I (1)

4* Processor System Reset

4F Simulation Reset Generator

processing_system7_0

||+ s_Axi_nPo_FiIFO_CTRL
H4 S_AXI_HPO

$—= M_AXI_GPO_ACLK

L—f S_AXI_HPO_ACLK

ZYNQ®

(2 matches)
Figure 10. 13: Adding the Reset block
(2) \ ,
Write reset in the field and select the
Processing System Reset by double
clicking on it.
axi_interconnect 0
DOR o || oy i+ s00_AXI > DDR
FIXED_IO 4 || et ACLK ={ FIXED_IO
nco +||| ARESETN
useIND_0 + ||| S00_ACLK 8 MOO_AXI + i
M_AXI_GPO + i} S00_ARESETN
TTCO_WAVEO_OUT MOO_ACLK
TTCO_WAVE1_OUT MOO_ARESETN
TTCO_WAVE2_OUT
FCLK_CLKO AXI Interconnect
FCLK_CLK1

FCLK_RESETO_N

ZYNQ7 Processing System

Figure 10. 14: The PS Reset block is part of the Block Design

proc_sys_reset_0

slowest_sync_clk mb_reset

ext_reset_in bus_struct_reset{0:0]
aux_reset_in peripheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn{0:0]
dem_locked peripheral_aresetn{0:0]

Processor System Reset

Now it is time to wire the three blocks together. Start from the reset pins. Connect
it to the reset output of the Processing System. This is shown in Figure 10.15.

Page 6] 32

Chapter 10 | joseph attard

processing_system7_0 axi_interconnect_0

DOR + ||} 4 s00_axi
FIXED_IO o ||ty ACLK
ne_o + ||| ARESETN
ll+ s.Axt_1po_FiFo_cTaL USBIND_O + || S00_ACLK B M00_AXI + fii
| [yep g - M_AXI_GPO # i} S00_ARESETN
| A T ZYNQ TTCO_WAVEO_OUT MOO_ACLK

TTCO_WAVE1_OUT
TTCO_WAVE2_OUT

MOO_ARESETN

L S_AXI_HPO_ACLK

FCLK_CLKO AXI Interconnect
FCLK_CLK1
proc_sys_reset 0
FCLK_RESETO_N
slowest_sync_clk mb_reset
ZYNQ7 Processing System _L WANCE =
ext_reset_in bus_struct_reset{0:0]
aux_reset_in peripheral_reset{0:0]
mb_debug_sys_rst interconnect_aresetn{0:0]
dem_locked peripheral_aresetn{0:0]

Processor System Reset

Figure 10. 15: Connecting the Zynq PS to the PS Reset Block

ARESETN L
S00_ACLK MOO_AXI + | i—
T_- S00_ARESETN 3% -
MO0 ACLK MOLAX] o | eemmm— Figure 10. 16: Connecting the PS Reset with the AXI
*_ MOO_ARESETN interconnect Block
MO1_ACLK))
1— MO1_ARESETN Figure 10.16 shows all the reset inputs
J of the AXI interconnect block are
0 .
frtinterconnect connected to the interconnect_aresetn [|
proc_sys_reset 0 of the Processing System block. This
slowest_sync_ck mb_reset makes sure that there will be minimal
- d_resel_jn bus,_struct_pessi0:) delay when resetting the system.
aux_reset_in peripheral_reset[0:0]
mb_debug_sys_rst interconnect_aresetn[0:0]
dom_locked peripheral_aresetn[0:0]
Processor System Reset
i+ s00_axi
ACLK
ARESETN
S00_ACLK Figure 10. 17: Connecting a few of the clock signals
S00_ARESETN =
MOO_ACLK .
wo smeserw All clock signals should be connected to
MO1_ACLK : :
Mot ARESETN the same 100 MHz clock signal, emerging
axi_gpio, 1 S from the Processing .Sys.tem part. This
4 sax ensures full synchronisation.
5 _axi_ack GPIO + || proc_sys !
s _axi_aresetn slowest_sync_ck
AXI GPIO A2
«Q auw_reset_in
axi_gpio 0 = mb_debug_sys_rst inty
+ S.AX = dom_locked]
s_axi_ack cPio +||| Processor Sys

Page 7132

Chapter 10 | joseph attard

Include the AXI GPIO

The AXI GPIO will be used to interface the PS system with XADC. Another AXI GPIO
will be used to interface the output pins located on the FPGA part of the SoC to the
PS so that the PS part will drive the LEDs connected to the PL part of the Zynq
Processing System. The LEDs should give a clear visual indication whether the ADC
result is actually reflecting a change in the analogue voltage input.

axi_gpio_1 - |
’+ g) AXl Inerconnact
- s_ax:_a:!k GPI0 + ” proc_sys_resat 0
S_ax_wesen slowest_sync_cdk mb_meset
X1 GPIO ot _resel n bus_stuct_resef0 ()
aux_reset n perpheml_resetj00]
axi_gpio_0 mb_debug_sys_rst imercmmect_wresar{00]
4 s_ax dom_locked perpheml_aresetr{00)
s_an_ack 0 +||| Procassor System Reaset
S _axn_wesen
\ AXI GPIO
Figure 10. 18: Two AXI GPIO in the same diagram
Wiring the AXI GPIOs
axi_gpio_1 L)
. AXI Interconnect
|4 S_AXI o
. roc_sys_rese
s_axi_ack cPio +|| proc_sys_rese.
s_axi_aresetn — slowest _sync_clk mb_reset
——— 0 ext_reset_in bus_struct_reset[0:0]
AXI GPIO
-0 aux_reset_in peripheral_reset[0:0]
axi_gpio 0 — mb_debug_sys_rst interconnect_aresetn[0:0]
" = dcm_locked eripheral_aresetn[0:0
"4 s_ax | dom. peripheral [0:0]
s_axi_aclk GPIO + " Processor System Reset
s_axi_aresetn
AXI GPIO

Figure 10. 19: Connecting the AXI GPIO Reset

First, make sure that the AXI GPIO block reset is connected to the
peripheral_aresetn[] input.

Page 8|32

T ACLK
T ARESETN
T S00_ACLK
[\ — S00_ARESETN 2
1 MO0_ACLK
N MO0_ARESETN
J MO1_ACLK
MO1_ARESETN
axl_gpio_1 AXI Interce
<4 s_AxI
s_axi_ack GPIO +|| EEE——
0 s_axi_aresetn slowest_sync_clk
AXI GPIO Sl
@ aux_reset in
axi_gpio 0 = mb_debug_sys_rst inte
“4 s ax = dam_locked (]
s_axi_ack GPIO + " Processor Sys
p—0 s_axi_aresetn

Chapter 10 | joseph attard

Then connect the S_AXI_ACLK clock
signal to all the common 100 MHz clock
of the system.

Figure 10. 20: Connecting the clocks of the AXI GPIOs

Connecting the AXI GPIO data bus to the AXI interconnect

axi_interconnect_0

4+ s00_AXI
= ACLK

ARESETN

S00_ACLK

S00_ARESETN I3

MOO_ACLK

axi_gpio_1
|4 S_AXI
——== 5 axi_ack

owo +l

|—0 5_axi_aresetn
h AW MM

MO0 _ARESETN
MO1_ACLK
— MO1_ARESETN

_. MOO_AXI + fi}
MO1_AXI +'

AXI Interconnect

proc_sys_reset_0

slowesl_sync_ck

ed_resel_in

] DW_AAI

ACLK
ARESETN
S00_ACLK
S00_ARESETN
MO0_ACLK
MOO_ARESETN
MO1_ACLK
MO1_ARESETN

v MOO_AXI + 55

-
mb_reset

bus_strud_reset[0:0]

O MO1AX i

+ S_AXI

s_axi_ack

s_axi_aresetn

-‘-E}fv«r S AXI
e avi arle

___sxigiol

» AX1T GPIO 3

axi_gpio_0

GPIo +|||

coin il

AXI Interconnect

proc_sys_reset_0

e slowest_sync_ck

—Q ex_reset_in
< aux_resel_in
= mb_debug_sys_rst
= dam_locked
L =

Praracen

interconnect_aresetn[0:0)

P_.
peripheral_aresetn[0:0] r—l
Suctam Rocat)

mb_reset L
bus_struct_reset(0:0] =
peripheral_reset[0:0] ‘L

Figure 10. 21: Connecting the first AXI
GPIO to the interconnect

This is the
communication medium
between the Processing
System and the AXI GPIO
block. It is all hidden from
the designer!

Figure 10. 22: Connecting the second AX|

Both AXI GPIO blocks should

connected to the AXI

interconnect block as shown in
Figures 10.21 and 10.22.

Changing the width of the data busses of the AXI GPIOs

As discussed before, one of the AXI GPIO blocks will be used as an interface between
the Processing System and the XADC, while the other AXI GPIO block be used to
extend the external pinouts of the Processing System by using some of the external

Page 9132

Chapter 10 | joseph attard

pins allocated to the Programmable Logic side of the System-on-Chip. The following
Figures show how to configure the AXI GPIO blocks for custom applications.

Component Name axi_gpio_1
Figure 10. 23: Configuring the AXI GPIO 1
Board IP Configuration

Leave the board interface as
Associate IP interface v |p Configuration *

custom.
IP Interface Board Interface
GPIO Custom
GPIO2 Custom

Clear Board Parameters

Component Name axi_gpio_1

IP Configuration

GPIO

GPIO Width) GPIO Width I 5|

Default Output Value 0x00000000 [0x00000000, OxFFFFFFFF]

| All Inputs

Default OQutput Value 0x00000000 [0x0000C
Default Tri State Value OxFFFFFFFF

+| Enable Dual Channel

102 Figure 10. 24: Configuring the AXI GPIO 2

Channel 1 will accommodate the 16-bit

ADC result from the XADC, while channel 2 accommodates the channel address from
XADC.

[0x00000000,0xFFFFFFFF]

So, Figure 26 above shows a single AXI GPIO block consisting of two channels. One

of the channels is made up of 16 bits while the second channel is made up of 5 bits.
Note that both channels are configured as inputs.

The second AXI GPIO will also be left as custom.

AXI GPIO (2.0)
O Documentation (= IP Location Figure 10. 25: Configuring AXI GPIO 3
Show disabled ports Component Name axi_gpio_0 Conﬁgurlng the SCCOIld AXI
Board nfigurat GPIO.
Associate IP interface with board interface
IP Interface Board Interface
GPIO Custom
GPIO2 Custom
P Clear Board Parameters
w4 s_ma

Page 1032

GPIO

["] Anninputs

v All Outputs

Chapter 10 | joseph attard

Figure 10. 26: Configuring AXI GPIO 2_2

The second AXI GPIO will drive 18 LEDs
connected on the devBoard that designed

GPIO Width

18

specifically for the z-turn board. The
second channel of this AXI GPIO is not

Default Output Value

0x00000000

going to be used.

Default Tri State Value O0xFFFFFFFF

Including the XADC in the block design

Q. Search...
W SelectAll
— + AddP.
L Add Module...
Search: XADC|
{F XADC Wizard

xadc_wiz 0

o s_axi_tile
+ Vp_Vn
s_axi_ack

s_axi_aresetn

ip2intc_ipt
user_lemp_alarm_out
vecint_alarm_out
vecaux_alarm_out
vecpint_alarm_out
vecpaux_alarm_out
veoddro_alarm_out
ot_out
channel_outi4:0]
eoc_out

alarm_out

eos_out

busy out

rrrryrrrrrrruoTa

XADC Wizard

Figure 10. 27: Adding the XADC

Right-click anywhere on the canvas

Clri then choose Add IP.

(1 match) | Figure 10. 28: Call XADC from List

Write XADC in the field provided and

double click on XADC wizard.

Figure 10. 29: The XADC block

This is the original XADC block. Double-clicking on it
to configure it according to the needs of this
application.

Also, the XADC mode of communication will be
changed from AXI4 lite to Dynamic Reconfiguration Port
(DRP) between the XADC block, the PS and PL.

Page 1132

Chapter 10 | joseph attard

Configuring the XADC block to be compatible with the software and hardware

of this project

The BASIC page:

Interface Options

O AXI4Lile None

Startup Channel Selection

Simultaneous Selection
Independent ADC

Single Channel

® Channel Sequencer

In the basic page:

Figure 10. 30: XADC Basic Page
Timing Mode

* Continuous Mode

DRP Timing Options

DCLK Frequency(MHz)
ADC Conversion Rate(KS

Acquisition Time (CLK)

e change the interface options to DRP
e leave the timing mode in continuous mode.
e Change the startup channel selection to channel sequencer

AXI4STREAM Options

Enable AXl4Stream

FIFO Depth 7

Control/Status Ports

reset_in

Event Mode Trigger

JTAG Arbiter

éa

Analogue Sim File Option

Figure 10. 31: XADC Configuration 2
. Leave the AXI4STREAM as is

. Remove the tick from reset in box so that
the XADC will be free running

) Note the Event Mode Trigger is not an
option. This is because the continuous sampling
mode was selected.

Leave everything as is in the Analogue Sim File option section.

12 | 32

The ADC Setup Page

Basic ADC Setup | Alarms Channel Sequencer Summary

Sequencer Model Continuous v

None
ADC Calibration Supply Sensor Ca
1
ADC Offset Calibration Sensor Off¢ 64

v ADC Offset and Gain Calibration

¥ Enable CALIBRATION Averaging

External Multiplexer Setup

External Multiplexer

Channel Averaging

v Sensor Offsevenmsoanrwanuration

Channel for MUX VP VN

Enable muxaddr_out port
it.
Leave the ADC calibration as is.

Leave channel for MUX as is.

The Alarms Page

Basic ADC Setup Channel Sequencer
Over Temperature Alarm (°C)

Trigger 125.0 -40.0-125

Reset 70.0 -40.0 - 125

O/CCINT Alarm (Volts)

Lower |0.97 -1.05]

Upper |1.03 -1.05]

OCCERAM Alarm (Volts)

Summary

OlserTemperature Alarm (°C)

Trigger 85.0

Reset 60.0

OCCAUX Alarm (Volts)

Lower 1.75

Upper 1.89

OCCPint Alarm (Volts)

Chapter 10 | joseph attard

Figure 10. 32: The ADC Setup Page

In the ADC setup page, leave
sequencer mode in continuous
mode so that the XADC will

operate in free running mode.

Opt for averaging 16 and
therefore XADC will sample
and add 16 ADC results and
output their average. This is
very convenient because a low
pass filter is created in
hardware and the designer
does not have to worry about

Figure 10. 33: XADC Alarms Page

Remove all the ticks in the
alarms page. For this project
the alarms are not needed.

Page 13|32

The Channel Sequencer Page

Show disabled ports

Basic

Chapter 10 | joseph attard

Figure 10. 34: XADC Channel Sequencer Page

Component Name xadc_wiz_0

ADC Setup Alarms |Channel Sequencer

e In the channel sequencer page,
VREFP the channels that are to be
VREFN
: sampled must be selected.
f chennel oull0]] vauxpOhvauwn0
+ s_dp - .
H+ B soc.oul vauxpinaun Note in the left pane that the
- alarm_out .
I P sos_out vauxp2naun2 XADC block has reduced in
b .
il vaup3vaum3 size due to the changes we
vauxpd4hawmnd have done
vauxpShawmns
vauxpbhawmnt
vauxp7hauxn?
vauxp8iauxng
Wiring the XADC
DR+ |[l—
FIXED_IO 4 ||_J xadc_w
nc_o + |||
USBIND_0 + || [ll4 s_dm
M_AXI_GPO 4 [[ll4 ve_vn
TTCO_WAVED_OUT + Vaux8
TTCO_WAVE1_OUT deli_in
TTCO_WAVE2_OUT L:|
FOLK_CLKO |, XADC W
FCLK_CLK1
FCLK_RESETON axi interco
__@d_ntarco
stem o
|4 soo_Axi
ACLK
I ARESETN

Figure 10. 35: Connecting the XADC Clock

rrruru

xadc wiz 0
q— s_dp)
- P daddr_in[6:0]
= P den_in
- channal_out|4:0]
- P di_in[15:0]
< do_out[150] @oc_out
- ’ alam_out
- <« drdy_out -
eos_out
- P dwe_in
busy_out
[+ ve_va
|| + Vaux8
—_— Jddlk in
XADC Wizard

Dclk_in should be connected to the 100 MHz clock because this is the default clock
input for the 1IMSPS can be achieved on Vp/Vn analogue inputs.

Figure 10. 36: Extending the DRP Bus

Hover the mouse over s_drp. Notice two
arrows pointing downwards. At that point
left-click the mouse to reveal the DRP
busses as shown in Figure 10.36

Page 14|32

Chapter 10 | joseph attard

Figure 10. 37: Connecting the Vip/Vn to external pins

', Add Module...
Vp/Vn will be connected to their dedicated external pin.

To do this, hover the mouse on Vp/Vn, right-click and
Buin Mannactine fitnma - choose make external as shown in Figure 10.37. Do the
same for Vaux8.

T o
a % Make External

»

Now according to page 73 of UG480, for XADC to operate in continuous mode, one
must do the following connections:

e Connect channel[4:0] to daddr_in[4:0] — daddr_in[6:5] must be connected to
logic O.

e Connect d_en_in with eoc_out

e Connect drdy_out with dwe_in

For point 1 above, the successful way to do it is to connect them to a VHDL
module and concatenate “00” to bits 6:5 of daddr._in.

channeladdr_out <= "00" & ADCchannel;

where ADCchannel is connected to channel out of the XADC block.

] L \-ll_lllll\.lu\.l‘]
= 4 do out[15:0] xadc_ wiz_0
- 4 drdy_oul ——" - s_drp
. = P daddr_in[6:0]
nike dwe-ln — P den_in
- channel_out[4:0] —
[" + Vp Vn = » diin[15:0] ot

Figure 10. 38: Wiring the XADC

Figure 10.38 show the rest of the connections of the XADC block.

15 | 32

Chapter 10 | joseph attard

Connecting the ADC result bus to the AXI GPIO block

[~ 5.0

= » daddr &0

b den_n
b di_in{15:0)

< do_out{ 151

I i
B dwe n

{ll+ ve o

fl|l+ vae

]

channel_outid:(f
eoc_out
darm_out
eos_out

busy_out

rrrit

XADC Wizard

axi_gpio_1

-

Interface

+ S00 AX
ACLK
ARESETN
$00_ACLK
$00 ARESETN
MOO_ACLK

Connection: proce

cpe MO AX i
om0t AX 4|

4 5 A
5_aw_adk

15-“-"”“' @02 10_(40] 4 =

ario |||

go_o_i[150] «
ario2 —|||

AXI GPIO

MOO_ARESETN
MO1_ACLK
MO1_ARESETN

\ J

AXI| Interconnect

b dacdr in(6:0]

B den_in
> d_in{15:0]

« do oul] 15:0]
o drdy out
» dwe n

LTI

i+ vo.vn
{ll+ vawxs

—Ldr.‘l&_n

channel_outd:(| —
aoc_out
darm_out
aos_out

busy _out

XADC Wizard r p—

axi_gpio_1

. e e} —|||
G b gio_o_{150] <

axi_interconnact_0

-
ACLK
ARESETN

S00 ACLK
500 ARESETN
MOO_ACLK
MOO_ARESETN

Il

————— 3 a0 ack PR = “

| o.me go2 o [40) «

MO1_ACLK
MO1_ARESETN

cs MOOAX o |i:

T MOLAX i

AXI Interconnect

Figure 10. 39: Connecting the ADC result bus to the AXI GPIO Block

Page 16 32

Chapter 10 | joseph attard

Including the VHDL module in the block design

= + AddIP Now, to include a custom VHDL module, right-click anywhere
= on canvas and select add module, the following pop up window
¢ Add Module Figure 10. 40: Adding a VHDL Module to the Block Design

Select a module to add to the block design. The VHDL modules that have passed the

synthesis test after saving the code will appear
in the list. If there are no modules in the list,
Module type: | RTL v then it means that the VHDL module has an
error and one needs to rectify that error before

Search: O
, the module will be available to be added in the
i XADC_PL_driver (XADC_PL_drivervhd) block design.
! <+ AddIP..
XADC_PL_driver_0 4 Add Module...

3\
ADCresult_in[15:0) SevenSeg[6:0] |-| Oy lMakeExtema|
esu 0] = -
- ERTLE channeladdr_out[6:0) P IP Settings
ADCchannel[4:0] % =

W | = J'l [validate Design

XADC PL driver v1 0

Start Connection Mode

Figure 10. 41: Connecting the HDL module to outside peripherals

Hover mouse on the respective pins, right click and then choose “make external”.

USBIND_O + ||| T —>
M_AXI_GPO + fi:
- - >
IQ TTCO_WAVEQ_OUT >
: TTCO_WAVE1_OQUT M
TTCO_WAVE2_QUT)
FCLK_CLKO >
FCLK_CLK1
ll+
FCLK_RESETO N :l N
I
ng System de
|
—
|&
i
1
‘iver_0
N 1
N SevenSeg[6:0] J !
= channeladdr_out[6:0) I i anie 1 I T_ !
- axi anin

Figure 10. 42: Connecting the Channel Address Bus via the VHDL module

Page 17|32

Chapter 10 | joseph attard

XADC_PL_driver 0
p
ADCresult_in[15:0] A SevenSedon] :
uit_in E - -
- ERTLE channeladdr_out[6:0) .]
ADCchannel[4:0] = = axi_gpio_1
' ADCresult_out{11:0] p
XADC_PL_driver v1_0 "4+ S_AXI 60 ~ ||
. = gpio_io_i[15:0) <
s_axi_aclk
= Gprio2 — |||
s_axi_aresetn :
I - gpio2_io_i[4:0] 4

Figure 46: The channel address is input to the VHDL module

The ADCchannel bus is connected to channel out of the XADC block. This will
make sure that daddr_in[6:5] will be connected to logic O and daddr_in[4:0] will be
connected to channel out and therefore the channel address is still 7 bits wide but
only the first 5 bits are really selecting which channel is being sampled! This is
specified on page 73 of UG480.

XADC_PL_driver 0

ADCresult_in[15:0] SevenSeg[6:0] ||
sull_in X - -
ADCchannel(d0] ERTLE cranneiaser oute0) I e
annel|4 - -
ADCresult_out[11:0] axi_gpio_
XADC PL_driver v1 0 N GPIO —w
- N gpio_io_i[15:0] 4
s_axi_ack i
crIoz2 —|ll

Figure 10. 43: ADC result bits shared between AXI GPIO and VHDL module

ADCresult is connected to do_out of XADC. This data will be shared with the PS via
the AXI GPIO.

The architecture of the VHDL module is shown in the code snippet 10.1 below:
architecture Behavioral of XADC_PL_driver is
signal internalADCresult : integer;
' begin
channeladdr_out <= "00" & ADCchannel;

internalADCresult <= to_integer (ADCresult_in(1l5 downto 4));

ADCresult_out <= std logic wector (ADCresult_in (15 downto 4)) when ADCchannel = "11000" else
"000000000000";

process (ADCchannel, internalADCresult,clk)

Page 1832

Chapter 10 | joseph attard

. begin

if rising edge(clk) then
if ADCchannel = "00011" then
if internalADCresult >= 0 and internalADCresult < 400 then sevenseg <= "0111111"; --0
elsif internalADCresult >= 400 and internalADCresult < 200 then sevenseg <= "0000110"; --I
elsif internalADCresult >= 800 and internalADCresult < 1200 then sevenseg <= "1011011";--2
elsif internalADCresult >= 1200 and internalADCresult < 1600 then sevenseg <= "1001111";--3
elsif internal®™==en]t >= 1600 and internalADCresult < 2000 then sevenseg <= "1100110";--<
elsif internal iNt€ger 3¢ >= 2000 and internalADCresult < 2400 then sevenseg <= "1101101";
elsif internalADCresult >= 2400 and internalADCresult < 2800 then sevenseg <= "1111101";
elsif internalADCresult >= 2800 and internalADCresult < 3200 then sevenseg <= "0000111";
elsif internalADCresult >= 3200 and internalADCresult < 3600 then sevenseg <= "1111111";--2
elsif internalADCresult >= 3600 and internalADCresult < 4096 then sevenseg <= "1100111";--2
elss sevenseg <= "0000000";
end if;
end if;
end if;

end process;

end Behavioral;

Code Snippet 10. 2: VHDL code

Validating the schematic

wvhd X Click on the validate schema icon on the tool bar of the canvas

™~ C Figure 10. 44: Validate the Block Design

processing_system7 _(
¢ Critical Messages X

There were four critical warning messages while validating this design.

Messages

© [BD 41-1356) Address block </axi_gpio_0/S_AXI/Reg> is not mapped into
</processing_system7_0/Data>. Please use Address Editor to either map or exclude it.

0 [BD 41-1356] Address block </axi_gpio_1/S_AXI/Reg> is not mapped into
<Iprocessing_system7_0/Data>. Please use Address Editor to either map or exclude it

0 [BD 41-1356] Address block </axi_gpio_0/S_AXI/Reg= is not mapped into
</processing_system7_0/Data=. Please use Address Editor to either map or exclude it.

© [BD 41-1356) Address block </axi_gpio_1/S_AXI/Reg> is not mapped into
=/processing_system7_0/Data=. Please use Address Editor to either map or exclude it.

I QpenMessagesViewJ

Figure 10. 45: Critical Warning that can be solved

To solve the above warnings, one has to follow the steps in Figure 10.46.

Page 19132

Chapter 10 | joseph attard

Diagram »| Address Editor X XADC_PL_driver.vhd . .
Figure 10. 46: The Address Editor
Qe H . Click on the address editor to
Cell Slave Interface BaseN reveal the problematic blocks.
v #F processing_system7_0 o Highlight one of the blocks,
v B Data (32 address bits : 0x40000000 [1G] then right click on it and choose
v = Unmapped Slaves (2 Assign address
@ axi_gpi~ O o avi Dan J Do the same for the second
— Assign Address block
. Figure 10.47 shows the

v Unconnected SI .
assigned address of the AXI blocks

@ processing_
Exclude Segment

Cell Slave Interface Base Name Offset Address Range High Address
v #F processing_system7_0

v M Data (32 address bits : 0x40000000 [1G]
== axi_gpio_0 S_AXl Reg 0x4120_ 0000 6. ~ Ox4120_FFFF

= axi_gpio_1 S_AM Reg 0x4121 0000 6. ~ O0x4121 FFFF

v Unconnected Slaves
= processing_system7_0 S_AXI_HPO HPO_DDR_LOWOCM

Figure 10. 47: The AXI GPIO are assigned an address

Create a Hardware Wrapper

Create a hardware wrapper for the block design. This will act like a top-level module.

R B A — Source Node Properties...
BLOCK DESIGN - BlockDesign | & OpenFile
Sources | x Design Signals | Board Create HDL Wrapper...
- - View Instantiation Template
Q= & +
[Generate Output Products...
~ Design Sources (2
Reset Qutput Products...

> &1 BlockDesign (BlockDesign.bd) (9
“i& XADC_PL_driver(Behavioral) (X ALl

-

L]

Hierarchy |IP Sources Libraries Co

9
1

Figure 10. 48: Creating a Hardware Wrapper

Start synthesis

After the hardware wrapper is created, it is time to run synthesis. Click on Run
Synthesis on the left-hand-side of the IDE and click on OK for the following window.

Page 2032

Chapter 10 | joseph attard

Before running implementation, it would be wise to assign the appropriate pin
numbers to all external pins as shown in Figure 10.49.

gpio_io_o_0[17]

gpio_io_o_0[16]

gpio_io_o_0[15]

gpio_io_o_0[14]

gpio_io_o_0[13]
gpio_io_o_0[12]

gpio_io_o_0[11]

gpio_io_o_0[10]

gpio_io_o_0[9]
gpio_io_o_0[8]
gpio_io_o_0[7]

gpio_io_o_0[6]

gpio_io_o_0[5]

LR OO0CO0OO0O0OOO00O

gpio_io_o_0[4]

gpio_io_o_0[3]

& &

gpio_io_o_0[2]

gpio_io_o_0[1]

A &

gpio_io_o_0[0]

ouT
out
ouT
ouTt
ouT
ouTt
out
ouTt
ouT
out
ouT
out
ouT
ouTt
out
ouTt
out
out

v LVCMOS33*
v LVCMOS33*
v LVCMOS33*

v LVCMOS33*
v |:> LVCMOS33*
LVCMOS33*

LVCMOS33*

LVCMOS33*

LVCMOS33*
5 LVCMOS33*
5 | LVCMOS33*
5 LVCMOS33*
5 LVCMOS33*
5 LVCMOS33*
5 LVCMOS33*
5 LVCMOS33*
5 LVCMOS33*
5- LVCMOS33*

<

< < <

L16
K19
L19
M17
M19
F16

< < <
W oW W

<

<
woow w

< <

D19
E17 o

<
NN NENENNNS
w w

G

Figure 10. 49Part of the pin assignments

Since there is not enough IO0s to cover both PS and PL, half of them will be allocated
to the PS part through the AXI GPIO and half of them to the PL part.

The single seven segment display is connected to the Programmable Logic part while

HSTL_II_18
HSTL_I_18
HSUL_12
LVCMOS12
LVCMOS15
LVCMOS18

| LVCMOS25
LVCMOS33

default (LVCMOS18)

default (LVCMOS18)

default (LVCMOS18)

~ 143 SevenSeg_0(7
<J SevenSeg_0[6]
<4 SevenSeg_0[5]
< SevenSeg_0[4]
<4 SevenSeg_0[3]
< SevenSeg_0[2]
<4 SevenSeg_0[1]
< SevenSeg_0[0]

N Onnbne ansba 14

out
out
ouTt
ouT
ouTt
out
out
out

the RS232 port will be used to send data to PC to confirm that
PS is reading XADC data.

Note that all the voltages where changed to 3V3 instead of
their default 1V8.

Notice the tick on the pins that were assigned a pinout!

Figure 10. 50: Changing the Operating Voltage to 3V3

v 35 LVCMOsS33*
H20 v v 35 LVCMOS33*
G20 v v 35 LVCMOS33*
H18 v v 35 LVCMOS33*
K18 v v 35 LVCMOS33*
L17 v v 35 LVCMOS33*
F20 v v 35 LVCMOS33*
G18 v v 35 LVCMOS33*

Figure 10. 51: Assignment of Seven Segment Pins

Due to the changes made to the external configuration of the design, a new
constraints file has to be created because now it differs from the standard constraints
file included with the board support files. So, Figure 10.51 shows that a new
constraints file will be created that will include the changes made.

Page 21|32

Chapter 10 | joseph attard

File Edit Flow Tools Window Layout View Help Q- Quick Access

® > B H OB & X ¥

SYNTHESIZED DESIGN * - synth_1 | xc7z020clg400-1 (active)

1F |P Catalog Sources Netist DeviceC ¢ Save Constraints >

- -~
Q = =2 Select a target file to write new unsaved constraints to.

v~ IPINTEGRATOR i isti ; y
~ Internal VREF E:nost;;sal?ngtsan existing file will update that file with the new ’

Create Block Design
0.6V
Open Block Design

Drop I/0 banks on voltages or th %) Create a new file

Generate Block Design VREF.
File type: iy XDC v
v SIMULATION /O Port Properties < Clock
File name: |pinouts (‘:l
Run Simulation <4 ADCresult_out_0[7] T
File location: & <Local to Project> ~
v RTLANALYSIS General = Properties Conf |
elect an existing file
> Open Elaborated Design ‘
Tcl Console Messages L =select a target file= v
v SYNTHESIS O. hd - .[: + @
-~ -

P Run Synthesis —~
- -~ . - 2 ¥ s arm u aliio

Figure 10. 52: Creating a new constraints file

After saving the new changes in the pinouts, the IDE will ask you to save to the new
constraints file . Just give it a name and then click on OK.

Bitstream failure

Bitstream Generation Failed X Figure 10. 53: Bitstream File Failure

° Bitstream Generation failed.

Nast So, the implementation run has passed successfully but

[] view Log the bitstream failed. Let’s see the errors:

Don't show this dialog again
|

@ [DRC NSTD-1] Unspecified /O Standard: 4 out of 189 logical ports use /0 standard (IOSTANDARD) value 'DEFAULT, instead of a user assigned specific value.
This may cause /O contention or incompatibility with the board power or connectivity affecting performance, signal integrity or in extreme cases cause damage
to the device or the components to which itis connected. To correct this violation, specify all I/O standards. This design will fail to generate a bitstream unless all
logical ports have a user specified I/0 standard value defined. To allow bitstream creation with unspecified I/0 standard values (not recommended), use this
command: set_property SEVERITY {Warning} [get_drc_checks NSTD-1]. NOTE: When using the Vivado Runs infrastructure (e.g. launch_runs Tcl command),
add this command to a .tcl file and add that file as a pre-hook for write_bitstream step for the implementation run. Problem ports: eos_out_0, eoc_out_0,
busy_out 0, and alarm_out_0. -

<J alarm_out_0 our T19 v 34 | LVCMOS33*

< busy_out_0 out P16 v 34 default (LVCMOS18)
< eoc_out_0 out P15 v 34 default (LVCMOS18)
< eos_out_0 out P18 v 34 default (LVCMOS18)

These must be changed to 3V3.

Page 22132

Chapter 10 | joseph attard

< alarm_out_0 ouT 19 v 34 LVCMOS33*
<1 busy_out_0 out P16 v 34 LVCMOS33*
< eoc_out_0 ouT P15 v 34 LVCMOS33*

< eos_out_0 out P18 v 34 | LVCMOS33*

Figure 10. 54: Error Messages

Now for the second error:

© [DRC UCIO-1) Unconstrained Logical Port: 38 out of 189 logical ports have no user assigned specific location constraint (LOC). This may cause /0 contention
or incompatibility with the board power or connectivity affecting performance, signal integrity or in extreme cases cause damage to the device or the components
to which itis connected. To correct this violation, specify all pin locations. This design will fail to generate 3 bitstream unless all logical ports have a user
specified site LOC constraint defined. To allow bitstream creation with unspecified pin locations (not recommended), use this command: set_property
SEVERITY {Warning} [get drc_checks UCIO-1]. NOTE: When using the Vivado Runs infrastructure (e.g. launch_runs Tcl command). add this command to a tcl
file and add that file as a pre-hook for write_bitstream step for the implementation run. Problem ports: ADCresult_out_0[11], ADCresult_out_0[10],
ADCresult_out_0[9], ADCresult_out_0[8], gpio_io_o_0[17], gpio_io_o_0[16], gpio_io_o_0[15], gpio_io_o_0[14], gpio_io_o_0[13], gpio_io_o_0[12],

gpio_io_o_0[11], gpio_io_o_0[10], gpio_io_o_0[9], eos_out_0, eoc_out_0... and (the first 15 of 19 listed).

Figure 10. 55: The Second Error

This error was generated because not all external pins were assigned a physical 10
pin. As the message suggests, create a .tcl file and pre-hook it to reduce this error
into a warning.

So, click on File> new file

Open IP Location...

New File...
u Figure 10. 56: Adding a .tcl File

Diagram X | Address Editor X | XADC_PL_driver.vhd ><|wamingsTCL.th lt

G:/Spartan3/SineFunction/ConvertDeg2Rad/warningsTCL tcl

Q o x B B / E ©Q

1 set property SEVERITY {warning} [get_drc_checks UCIO-1];

Figure 10. 57: Creating a .tcl File

The TCL file is an option under the new file selection in the File menu. The above
statement in the TCL file was written by the author to reduce the errors into warnings
for those pins who were not assigned any external IO pins.

Make sure that there is space between the braces and the square brackets and a
semicolon at the end!

FRER R e ' “:’U Now right-click on “generate
mol : 2
¥5 Generate Bitstream Bitstream
Bitstream Settings... Ments) ' .
> Open Hardware Malvey " ~gwiite i and click on Bitstream settings.

Figure 10. 58: TCL file affecting the bitstream generation

Page 23132

¢ Settings

Q-

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

& xinx_auto_0_xdb

I‘Bmmgs‘l‘ct.ld

Bitstream
Specify various settings related to writing bitstream

@ Configure additional bitstream settings.

~ Write Bitstream (write_bitstream)

tcl.post

Figure 10. 59: Pre-Hooking the TCL File

File pame: wamingsTCL tcl

Files oftype: | TCLFile (tcl)

Synthesis
Implementation
Bitstream

> IP

Tool Settings
Project

IP Defaults
Source File
Display
WebTalk
Help

Text Editor

v

3rd Party Simulators

v

Colors
Selection Rules
Shortcuts
Strategies

v oow

Window Behavior

Figure 10. 60: Selecting the new TCL File

~ Write Bitstream (write_bitstream)

Chapter 10 | joseph attard

pet_property SEVERITY {warning} [get_DRC_checks |

tcl.pre | G/Spartan3/SineFunction/ConvertDeg2Ra...

tcl.post
-raw_bitfile
-mask_file
-no_binary_Dbitfile
-bin_file
-readback_file
-logic_location_file
-verbose

More Options

tclpre
pre-step tcl hook

U

| cancel | | apply | | Restorew

Figure 10. 61: confirming the TCL File

Page 2432

Chapter 10 | joseph attard

Do not forget to click on Apply! Then OK

Click on generate bitstream again and see what happens.

Bitstream Generation Completed X

o Bitstream Generation successfully completed.

Next
(® open Implemented Design
View Reports
Open Hardware Manager

Generate Memory Configuration File

Don't show this dialog again

Figure 10. 62: Successful Generation of the Bitstream File

Now export the project to hardware including the bitstream file.

Exporting the hardware design

Add Sources... t Export Hardware...
Open Source File... Export Block Design...
Export Bitstream File...

Export » Export Simulation... I

Figure 10. 63: Exporting the Hardware

Export Hardware X

Export hardware platform for software
development tools. '

Include bitstream

Exportto: | i <Localto Project> v

(=)

Figure 10. 64: Including the Bitstream File

Now launch SDK from within the Vivado IDE environment. File -> Launch SDK

Page 25132

Chapter 10 | joseph attard

Export
Launch SDK

Click on OK for the following window.
Now create an FSBL project.
File = new = application project 2>

Mew Project

Application Project

Create a managed make application project.

Project name: | FSBLproject ¢”] give a name to the FSBL project
N
Use default location

Figure 10. 65: Naming the FSBL project

Click on NEXT underneath.

Templates

Create one of the available templates t2 92 Choose Zyngq FSBL from list and then click on FINISH

Available Templates: underneath'

Dhrystone

Empty Application Make sure that you allow SDK to create the work
Hello World environment.

wlP Echo Server

Memory Tests) . i

OpenAMP echo-test Figure 10. 66: Choosing the FSBL Project

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

1Zyna DRAM tests
Zyng FSBL

Now let’s create a C project

File 2 new > application project > give a name to the project

New Project

Application Project

Create a managed make application proj

Project name: ‘ C_projecﬂ

Use default location
Click on NEXT

Page 26|32

Chapter 10 | joseph attard

Templates

Create one of the available templat This time select hello world from the list and click on
FINISH.

Available Templates: Figure 10. 67: Selecting the C project

Dhrystone

Hello World

Memory Tests
OpenAMP echo-test

The SDK will add the C project to the Vivado project.

= C_project Figure 10. 68: Locating the Hello World C program
Binaries . . « . A
e Include the AXI GPIO library #include “xgpio.h
& Includes
& Debug v = ps7_cortexad 0 The xgpio library is in libsrc folder under
v E&sic & code ps7_cortexa9 0
lel helloworld.c & indude) _
[platform_config.h e lib
9 platform.c & libsrc & canps_v3_2
[platform.h & coresightps_dcc_v1_4
& Iscript.Id & cpu_cortexa9 v2_5
= Xilinx.spec & ddrps_v1_0
& devcfg_v3_5
Figure 10. 69: Locating the xgpio library = dmaps_v2_3

= emacps_v3_6
&= generic_v2_0

= gpio_v4_3

= gpiops_v3_3
& iicps_v3_5
= qspips_v3_4

AXI GPIO block library for the PS part is shown in Figure 10.69. This is different
from the gpiops Library so watch out!

Page 27|32

Chapter 10 | joseph attard

= generic_ vZ2_0

v & gpio_v4 3 Figure 10. 70: The AXI GPIO Library
¥ = sIC

le xgpio_extra.c

lg xgpio_g.c

ln xgpio_i.h

le xgpio_intr.c

A xgpio_Lh

[z xgpio_selftest.c

le xgpio_sinit.c

lgl xgpio.c

[0 xgpio.h

Makefile

Initializing the AXI GPIO

In xgpio_sinit.c file copy the lookup().
XGpio_Config *XGpio_LookupConfig(ul6é Deviceld)

U16 Deviceld can be found in xgpio_g.c file. There can be only two instances of
AXI GPIO. If the application needs three then one has to see whether there is a
workaround. The above function call is changed to:

AXlIgpiolPtr = XGpio_LookupConfig(XPAR AXI GPIO_O_DEVICE_ID);
Then write the function call:

int XGpio_Cfglnitialize(XGpio * InstancePtr, XGpio_ Config * Config,UINTPTR
EffectiveAddr)

converted to:

AXlIgpiolsuccess=XGpio_Cfglnitialize(&AXIgpiol,AXIgpiolConfigPtr,AXIgpiolConfigP
tr->BaseAddress);

AXlgpiolsuccess is of type int.

Now use the returned variable value to check whether the initialization has been
successful or not.

if(AXIgpiolsuccess != XST_SUCCESS)

{
return XST FAILURE;

}

Usually if there is a failure here, the program will stop running here.

Repeat the same instructions to AXI GPIO 2.

28 | 32

Chapter 10 | joseph attard

int main()

{
XGpio_Config *AXIgpio@ConfigPtr;
XGpio_Config *AXIgpiolConfigPtr;
int AXIgpio@success,AXIgpiolsuccess;
XGpio AXIgpio®,AXIgpiol;

init_platform();

/* Initialise AXI GPIO o*/

AXIgpioeConfigPtr = XGpio_LookupConfig(XPAR_AXI_GPIO_@_DEVICE_ID);

AXIgpio@success = XGpio_CfgInitialize(&AXIgpio®,AXIgpio®ConfigPtr,AXIgpio@ConfigPtr
->BaseAddress);

if(AXIgpio@success |= XST_SUCCESS)

return XST_FAILURE;
T

/* Initialise AXI GPIO 1*/
AXIgpiolConfigPtr = XGpio_LookupConfig(XPAR_AXI_GPIO_1_DEVICE_ID);
AXIgpiolsuccess = XGpio_CfgInitialize(&AXIgpiol,AXIgpiolConfigPtr,AXIgpiolConfig
->BaseAddress);
if(AXIgpiolsuccess != XST_SUCCESS)

{
)

return XST_FAILURE;

Code Snippet 10. 3: Initializing the AXI GPIOs
Now set the direction of each channel in each AXI GPIO block.

void XGpio_SetDataDirection(XGpio *InstancePtr, unsigned Channel, u32
DirectionMask)

The above function is found in xgpio.c file. 0 means that particular bit is an output
while I means that particular bit as input.

/*All of AXI GPIO @ is set as outputs*/
XGpio_SetDataDirection(&AXIgpio®@,1,0x000000080);

/* All of AXI GPIO 1 are set as inputs*/
XGpio_SetDataDirection(&AXIgpiol,1,OxFFFFFFFF);
XGpio_SetDataDirection(&AXIgpiol,2,0xFFFFFFFF);
|

Code Snippet 10. 4: Port Direction of each AXI GPIO
The channel number can be either channel 1 or channel 2 within each AXI block.

Now read from channel 2 of AXI GPIO 1 to know which ADC channel is giving the
ADC result from channel 1 of AXI GPIO 1 and then output the value in channel 1
of AXI GPIO 2.

u32 XGpio_DiscreteRead(XGpio * InstancePtr, unsigned Channel)
the above function returns a value of type u32.

ADCchannel = (XGpio_DiscreteRead(&AXIgpiol,2) & OxO0000001F);
now to write to a channel in one of the AXI GPIOs use:

void XGpio_DiscreteWrite(XGpio * InstancePtr, unsigned Channel, u32 Data)

29 | 32

while(1)
{

Chapter 10 | joseph attard

ADCchannel = (XGpio_DiscreteRead(&AXIgpiol,2) & ©x0000001F);
/* the ADC channel is 5 bits wide*/
if (ADCchannel == @xeeeeeee3) //reading Vp/Vn "eee1ll"

{

ADCresultVp = ((XGpio_DiscreteRead(&AXIgpiol,1l) & Ox@PEBFFFB) >> 4);
/* result is stored between 15:4 */

XGpio_DiscreteWrite(&AXIgpio®, 1, ADCresultVp);

printf("Vp ADC result is:%d", (int)ADCresultVp);//type cast u32 to int

else if (ADCchannel == @xeeeeeol8) //reading Aux8 "lleea"

{
ADCresultVAux8 = ((XGpio_DiscreteRead(&AXIgpiol,1l) & Ox@80OFFFO) >> 4);
/¥ result is stored between 15:4 */
XGpio_DiscreteWrite(&AXIgpio@, 1, ADCresultVAux8);
printf("Aux8 ADC result is:%d", (int)ADCresultVAux8); //type cast from u32
}

//to int type

Code Snippet 10. 5: Reading and Writing from AXI GPIO

In the code above, the read function together with bit-masking was used so that if
there are any other 1s which are not of interest will be removed. So, read the channel
number first, then use it as a reference to know which ADC channel is transmitting
data at the output. Send them on UART and at the same time display the result on
LEDs through the AXI GPIOs to access the pins located on the PL side.

Reconfiguring the Board Support Package

= C_project
L FSBLproject
i# FSBLproject k.~ Go Into

New

Open in New Window

E Copy Ct
Paste Ct
® Delete Di
Source
Move...

Rename...

E

Import...
Export...

L/

Refresh
Close Project
Close Unrelated Projects

Build Configurations

Run As
Debug As
4 Target Connectic Compare With
& Hardware Ser Restore from Local History...
& Linux TCF Agel_zf‘\ Board Support Package Settings

= QEMU TefGdk Re-generate BSP Sources

Figure 10. 71: Board Support Package

To be able to communicate with PC, UART
1 must be made as the default UART not
UART O.

Board Support Package Settings

Control various settings of your Board Support Package.

v Qverview .)
Configuration for 0S: standalone
v drivers Name Value Default
psT_cortexad_0 hypervisor_guest false false
stdin none
stdout ps7_uart 0 ¥ none

zyngmp_fsbl_bsp

none
ps7_coresight_ comp_0

ps/_uart 0

ps7vat1 |

Page 30|32

Chapter 10 | joseph attard

Board Support Package Settings Make sure to wait for the
update to take place

Board Support Package Settings)
because it takes a few

Control various settings of your Board Support Package.

minutes.
v Overview § i
Configuration for OS: standalone
standalone
v drivers Name Value Default

ps7_cortexa9_0 hypervisor_guest false false
stdin ps7_uart_1 none

stdout ps7_uart_1 none

zyngmp_fsbl_bsp false false

false false

false false

Creating the Boot Image File

Open i New Windon The Zynq 7 can only be programmed in two ways, either using
& Fsbiprey] ® Copy a JTAG cable or via the ARM Cortex A9 by loading a
i - el bootloader file on SD card. The ARM A9 reads the boot image

Souree file from the SD card and loads the PL part of the Zynq SoC.

Move...

U

Rename...

Right click on the C project and select create boot image.

s Import...
1 Export...

rE

Build Project
Clean Project
Rl Figure 10. 72: Creating the Boot image file

Close Project

Close Unrelated Projects

Build Configurations

Run As

Debug As

Compare With

Restore from Local History...

4 Target Conn &4
& Hardware C/C++ Build Settings
& Linux TCF. B Generate Linker Script

& QEMU Tef_Change Referenced BSP
B Create Boot Image

Architecture: | Zynq v
(®) Create new BIF file () Import from existing BIF file

Basic Security

Output BIF file path: ‘ G:\Z-TURN_V12_20171030\Zynq7020\Multiple_ XADC_input_data_shared_PS_PL\Multiple_XADC_input_data_shared_PS_PLsdk\C_project\bootimage\C_project.bif

UDF data: ‘
[split Output format: BIN v
Output path: ‘ G:\Z-TURN_V12_20171030\2yng7020\Multiple_XADC_input_data_shared_PS_PL\Multiple_XADC_input_data_shared_PS_PL.sdk\C_project\bootimage\BOOT.bin

Boot image partitions

le path

ootloader) G:\Z-TURN_V12_20171030\Zynq7020\Multiple_XADC _input_data_shared_PS_PL\Multiple XADC_input_data_shared_PS_PL.sdk\FSBLproject\Debug\FSBLproject.elf
\Z-TURN_V12_20171030\Zyng7020\Multiple_XADC_input_data_shared_PS_PL\Multiple_XADC_input_data_shared_PS_PL.sdk\BlockDesign_wrapper_hw_platform_0\BlockDesign_wrapper.bit
\Z-TURN_V12_20171030\Zynqg7020\Multiple XADC input_data_shared_PS_PL\Multiple XADC input_data_shared_PS_PL.sdk\C_project\Debug\C_project.elf

Make sure that there are three files in the ISO file. Click on Create boot image
underneath.

Page 31132

Chapter 10 | joseph attard

Now look for the generated boot image file in the appropriate folder. Copy and paste
on the SD card.

|#] Paste shortcut & History (i Invert selection

to~ to~ A folder 2

Clipboard Organise New Open Select

v « Z-TURN_V12_20171030 » Zynq7020 » Multiple XADC input_data_shared_PS_PL > Multiple_ XADC input_data_shared PS PLsdk > C_project » bootimage

Name Date modified Type Size
Jick access
Jesktop * =y BoaT 24/11/2018 16:20 PowerlSO File 4,133 KB |
9 C_project 2471172018 16:20 Powerl5O File TKB
Jownloads b

Figure 10. 73: Locating the BOOT image file in File Explorer within Windows

Page 3232

Chapter 11 | Joseph Attard

Event driven sampling of multiple XADC channels from the Programmable
Logic

The aim of this chapter is to sample XADC channels using event driven technique
from a VHDL module. Using this technique, the programmer has full control of the
XADC block and therefore could determine which ADC channel to sample and when
the ADC result is available.

In previous chapters, the XADC was configured to do continuous sampling and all
that was needed from the designer’s side is to sample the channel address available
at the output of the XADC block and route the ADC data on the do_out bus to the
output port. This is convenient, it is challenge to write an XADC driver that is able
to operate the XADC block in event-driven mode.

During experimentation, it was discovered that at power-on-reset, the XADC needed
some finite time to settle, before the first sample. This should be in the form of
a small delay of 100ms.

End-of-Conversion Signal

In previous code the DRDY signal was being monitored while the EoC signal was not.
This was recommended by UG480 on page 74 section Dynamic Reconfiguration
Port Configuration (DRP). However, taking a closer look at the timing diagram of
the Event-Driven Sampling, one will soon realize that it was imperative to check
EoC signal. By doing so, the XADC was given enough time to finish the previous
conversion and start a new sample. UG480, shows that the XADC needs four clock
cycles between conversions especially if the next conversion is going to be done
from a different channel.

conversion start signal 1
has 10 be two dock

S
cycles .
DCLK
|)
§ ock cycles are
- ADC Conversion Teme (N - > between
ADCCLK N 1 < i | a @2 4 pt - . farent
dyusition Time this s neaee of
you walt foe the
CONVS N of signa

- Mis Sotting Teme (N+1

i 1
EOCEQS _ﬂ“ g
cHANNEL[40] | fchanne tor -1 \ Jerann

Figure 11. 1: Event Driven Mode Timing Diagram

CONVST signal

From the timing diagram it is clearly seen that two clock cycles are needed for
CONVST signal to be effective. This gives time for the BUSY signal to become logic
1.

e So, check the BUSY signal to be at logic 1 after driving the CONVST signal to
logic low.
e Make sure that the BUSY signal goes low again.

Page 10f9

Chapter 11 | Joseph Attard
e Then wait for the EoC signal to go high.

Now read the channel ADC data from the data bus. This is described in the next
section.

Reading ADC data from the data bus

Now to read the ADC result from XADC, one must go through the following steps
according to timing diagram of Figure11.2. This was taken from page 75 of UG480:

Rk [A I I)) I I I O O
CEN T i i
OWE i i 3
busy starts DADDRE0] Y) | i
before the DEN " » : T} I-Iu
signal and it Dirsa0] .- & 4
starts after the DO 5] . ¥ ¥ :ll
CONVST signal i P N '
ORODY : I 1 ks i
EQCEDQS i 1 L
ALM[Z:OYOT # |
¥ #
BLSY | l.'.
CHANNEL[4:0] —

Figure 11. 2: DRP Timing Diagram

So, after the EoC is asserted, it is time to read the ADC result by following these
steps:

e Assert the D_en signal to logic 1 for one clock cycle

e The D _we input of the XADC should be hardwired to ground
e Wait for DRDY signal of XADC to go high

e Get the ADC data

Obviously the above must be implemented in a state machine, and therefore one
must make sure to store the ADC result in a register.

Since more than one XADC channel must be read, with my VHDL code, another
state-machine was created to controls which channel the controller will sample. The
following sections show the block diagram and explain the VHDL code.

Page 2 of 9

The Block Diagram

Chapter 11 | Joseph Attard

xade_wiz_0
llf= s_em
P daddr n(&0]
»den n
a 18
1mL1Tm ouaeg =
pocessing_system7_0 Aoy ax ‘“ ot
am ot =
» owe_in
Vo_n 0 e =] I+ v ot pon
Vauxd_0 w0 4l {[l4 vase i -
ock in
0
|I[4 s_sx1 0 P00 cTRL USSR, +!‘ resst_n
Hi4 5_ax1_HFO - gl & comat_in
: ZYNO TICO_WAVED OUT =
::’:;::u:) TTCO_WANE1_OUT = DX ard
TTCO_WANVEZ OUT =
FOLK CLMD v
FOLK CLMY =
FCLX RESETO_N §o—
7 9 S
VHOL_XADCdsver_0
LED
o en > oo
XADCresct pu—11-
ADCAY 15 0]
- ' RO 20z
"
= 'RTL' amComarsion m—
N = S EnoOfCorw o ED
2 raaty 3 e = L{ EndOiCanv_outlED 0
‘ wie on
aata_ouf11.0] ha
cunny D data_out_g114)
] D sevenseg 00)

Figure 11. 3: System Block Diagram

One should go through all the steps described in previous chapters to draw the
circuit as shown in Figure 11.3. The XADC configuration will be explained next.

XADC Wizard (3.3)

© Documentation IP Location

Show disabled ports Component Name xadc_wiz_0

Basic |ADC Setup Alarms Channel S
Interface Options
AXl4Lite ['* DRP None
" + s_dip ’)
" + Vp_Vn channel_out[4:0] Startup Channel Selection
" + W:)a eoc_out
. alarm_out

e «os_out Simultaneous Selection

reset_in -

convst_in busy_out Independent ADC

Single Channel

| ® Channel Sequencer

Figure 11. 4: XADC Basic Configuration Page

After double-clicking the XADC wizard block, the basic page pops up. Enable the
DRP radio button and the Channel Sequencer button as shown in Figure 11.4. Scroll
the horizontal bar to the right to reveal the Timing Mode section as shown in Figure
11.5. Tick the Event Mode radio button. Leave the frequencies as they are.

Page 3 of 9

Chapter 11 | Joseph Attard

Component Name xadc_wiz_0

Basic ADC Setup Alarms Channel Sequencer Summary

Timing Mode

Continuous Mode | '®' Event Mode

DRP Timing Options

v| Enable DCLF

DCLK Frequency(MHz) 100| 8.0 - 250.0]
ADC Conversion Rate(KSPS) 1000 [39.0 - 1000.0]
Acquisition Time (CLK) 4 v

Clock divider value =4
ADC Clock Frequency(MHz) = 25.00 Scroll the bar to the right

L - |

Figure 11. 5: Enable the Event Mode

Component Name xadc_wiz_0

ADC Setup Alarms Channel Sequencer Summary
7 - 1020}

Arbiter Sim File Selection Default v

Analog Stimulus File design

Sim File Location 1 scroll down
Waveform Type CONSTANT "

Frequency (KHz) 1.0 [0.1-240 3]

Number of Wave 1 [1 - 1000]

Figure 11. 6: Analog Sim File Options

Leave the Analog Sim File Options section as it is.

Component Name xadc_wiz_0

Basic ADC Setup | Alarms Channel Sequencer Summary

AXI4STREAM Options

Enable AXl4Stream

FIFOQ Depth 7 [7 - 1020]

Control/Status Ports

v reset_in Temp Bus JTAG Arbiter

Event Mode Trigger

® convstin convstclk in

Figure 11. 7: Event Mode Settings

Page 4 of 9

Chapter 11 | Joseph Attard

Leave the AXI4STREAM section as it is but make sure to tick the reset in square and
the convst in radio button.

Leave the ADC setup page as it is.

Component Name xadc_wiz_0

Basic ADC Setup Alarms Channel Sequencer Summary
DVCCINT Alarm (Volts) DVCCAUX Alarm (Volts)
Lower 0.97 [0.0-1.05] Lower 1.75
Upper 1.03 [0.0-1.05] Upper 1.89
D/CCBRAM Alarm (Volts) DVCCPim Alarm (Volts)
Lower 0.95 5 Lower 0.95
Upper 1.05 1.05] Upper 1.00

DlCCF‘aUx Alarm (Volts) D\/CCDGI‘O Alarm{Volts)

Figure 11. 8: Alarms Setup page

Remove all the ticks in the alarms setup page as shown in Figure 11.8. make sure to
scroll down and disable the remaining alarms.

Component Name xadc_wiz_0

Basic ADC Setup Alarms Channel Sequencer Summary
WVN <O

VREFP

VREFN

vauxp0ivauxn0
vauxpiivauxni
vauxp2ivauxn2
vauxp3ivauxn3
vauxp4ivauxnd
vauxp5ivauxns
vauxp6ivauxnb

vauxp7iauxn7
vauxp8ivauxn8 C:l

Figure 11. 9: Selecting the Analogue Channels

In the Channel Sequencer page, select the channels for the application. In this
project, only the external Vp/Vn and Auxiliary channel 8 are selected.

That’s it! Now click on OK to finish the XADC setup. Now its time to reveal the VHDL
code.

Page 5 of 9

Chapter 11 | Joseph Attard

The VHDL driver

entity VHDL_XADCdriver is
Port (

: in unsigned (15 downto 0);

¢ : in std logic;

: out std logic;

iz: out std logic;
utLED: out std logic;
,EndOfConv, ADCbusy : in std logic;
data : out std logic vector(lS downto 0);
_en : out std logic;

: out unsigned (11 downto 0);

t : out std logic vector(é downto 0);
: out std logic vector(é downto 0));

end VHDL_XADCdriver;
Code Snippet 11. 1: Entity Declaration

Code snippet 11.1 shows the entity declaration. This shows all the inputs and the
outputs of the VHDL driver.

type states is (resetXADC,exitReset,strtConv,reset5Tconv,check_DRDY,D EnableHIGH,D EnableLOW,busyADC,

check DRDY2,getdata,checkEoC,delay); --check busyOUT,dummy state, master,, delayZ
signal current_state,next_state : states;

type master_states is (Ms0,Msl, Ms2,Ms3);
signal master_current_state,master_NexXt_State : MAStEr_states;

signal start_delay, end_delay : std logic;
signal getADCdata,ADCdata_done : std logic;

signal ADC_reg_addr : std logic wvector(€ downto 0);
signal internalADCresult : integer:

Code Snippet 11. 2: Declaring the internal signals

Code snippet 11.2 show all the internal signals used. Note the state machine
declaration.

process (clk,reset)

begin
if reset = "0' then master_current_state <= Ms0;

€lsif rising_edge(clk) then masteér_current_stateé <= Master_next_state;
end if;

end process;

Code Snippet 11. 3:

The process shown in Code Snippet 11.3 is used to control the master state machine.
As can be seen, it’s clock is the 100 MHz clock.

Page 6 of 9

Chapter 11 | Joseph Attard

process (master_current_state,ADCdata_done)
begin
case master_current_state is

when Ms0 => RDC_reg_addr <= "0000011"; getADCdata <=
master_next_state <= Msl;

(=]

when Msl => ADC_reg_addr <= "0000011"; getADCdata <= 'l";
if ADCdata_done = 'l' then master_next_state <= Ms2;
else master_next_state <= Msl; end if;

when Ms2 => ADC_reg_addr <= "0011000"; getADCdata <= '0";
master_next_state <= Ms3;

when Ms3 => RADC_reg_addr <= "0011000"; getADCdata <= 'l';
if ADCdata_done = 'l' then master_next_state <= Ms0;
else master_next_state <= Ms3; end if;

end case;
end process;

Code Snippet 11. 4: Master SM

Code Snippet 11.4 shows the syntax for the master state machine (SM). There are
two handshake lines between the master state machine and the slave state machine.
The slave state machine is the one that is directly interfaced to the XADC block. The
master SM issues a signal (getADCdata signal) to trigger the slave SM, then it waits
for the slave SM to finish (ADCdata_done signal). There is also the channel address
denoted as ADC _reg_addr, that selects which ADC channel should be sampled.

process (clk, reset)

begin

if reset = '0" then current_state <= resetXADC;

elsif clk'event and clk = "1' then current_state <= next_state;
end if;

end process;

process (current_state,ADCbusy,End0fConv,D_ready,end delay,getADCdata)
begin
case current_state is

when resetXADC => D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';EndOfConv_outLED <= '0';
Daddr_out <= ADC_reg_addr; --03FE is the address of status reister for Vp/Vn

start_delay <= '0';ADCdata_done <= '0°'
next_state <= exitReset;

when exitReset => D _en <= '0';XADCreset <= 'l';startConversion <= '0';write_en <= '0'; EndOfConv OutLED <= '0';
Daddr out <= ADC_reg addr; --03H is the address of status reister for Vp/Vnp
start_delay <= '0';ADCdata_done <= '0';
next_state <= check DRDY;

when delay => D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';EndOfConv_outLED <= '0';
Daddr_out <= ADC_reg_addr; --03H 1s the address of status reister for Vp/Vnp
start_delay <= 'l';ADCdata_done <=
if end delay = 'l' then next_State <= check DRDY;
else next_state <= delay; end if;

when check DRDY => D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';EndOfConv_outLED <= '0';
Daddr_out <= ADC_reg_addr; --03H is the address of status reister for Vp/Vn
start_delay <= '0';ADCdata_done <= '0';
if D ready = '0' then next_state <= strtConv;
else next_state <= check_DRDY; end if;

Page 7 of 9

when strtConv

Chapter 11 | Joseph Attard

=> D_en <= '0';XADCreset <= '0';startConversion <= 'l';write_en <= '0';EndOfConv_outLED <= '0';
Daddr_out <= ADC_reg_addr; --03H is the address of status reister for Vp/Vi

start_delay <= '0';ADCdata_done <= '0';
next_state <= resetSTconv;

when resetSTconv => D_en <= '0';XADCreset <= ’0',scartConver31cn <= 'l1';write_en <= '0';EndOfConv_outLED <= '0';

when busyADC =>

when checkEoC => D_en <=

Daddr_out <= ADC_reg_addr; --03H 1s he address of status reister for Vp/Vn
start_delay <= '0';ADCdata_done <= ‘0'
if ADCbusy = 'l' then next_state <= busyADC;

else next_State <= resetSTconv ;end if;

D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';EndOfConv_outLED <= '0';

Daddr_out <= ADC_reg addr; --03H is the address of status reister for Vpb/Vn
start_delay <= '0';ADCdata_done <= '0"
if ADCbusy = 'l' then next_state <=

else next_State <= checkEoC ;end if; --D Ena

0';XADCreset <= '0'; startConverSLCn <
Daddr_out <= ADC_reg_addr; --03H is the address of
start_delay <= '0';ADCdata_done <= '0':

if EndOfConv = '0' then next_state <= checkEoC;
else next_state <= D_EnableHIGH; end if;

when D_EnableHIGH => D_en <= 'l';XADCreset <= '0';startConversion <= '0 ;write_en <= '0';EndOfConv_outlED <= '0';

when D_EnableLOW

Daddr_out <= ADC_reg_addr; --03H is the address of status reister for Vp/Vn
start_delay <= '0';ADCdata_done <= '0';
next_state <= D_EnableLOW;

n
v

D_en <= '0';XADCreset <= 'D'.startConverSLOn
Daddr_out <= ADC_reg_addr; --03F
start_delay <= '0';ADCdata_done
next_state <= check_DRDY2;

'O' ;write_en <= 'O' EndOfConv outLED <= '0";

when check DRDY2 => D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';End0fConv_outLED <= '0';

Daddr_out <= ADC_reg_addr; --03H 15 the ad

start_delay <= '"0'; ADCdata_done <= '0';
if D_ready = '0' then next_state <= check_DRDY2:
else next_state <= getdata; end if;

when getdata => D_en <= '0';XADCreset <= '0';startConversion <= '0';write_en <= '0';EndOfConv_outLED <= '0';

end case;
end process;

Daddr_out <= ADC_reg_addr; --03F 1s the address
start_delay <= '0'; ADCdata_done <=
if getADCdata = '0' then next_state <
else next_state <= getdata; end if;

Code Snippet 11. 5: Event Driven XADC driver

So in the first three states, the SM will first reset the XADC block, then it will go into
a delay of 100 mS. At this point the SM will monitor the DRDY signal, and once this
goes low, the SM will trigger the conversion process. The SM will then wait for the
busy line to go high at which point the start-conversion signal will be reset. The SM
waits for the end-of-conversion signal to go high, at which point, the data enable
signal will be set by the SM for one clock cycle. Then the SM will monitor the DRDY
signal again to go high. After that, the SM will enable the 16-bit ADC data and copies

it from the data

bus.

process (start_delay, clk)
variable count : integer;
begin

if

start_delay = '0' then count := 0; end_delay <= '0';

elsif rising edge(clk) then count := count + 1;

if

if count < 10000000 then end_delay <= '0';
elsif count >= 10000000 then end_delay <= 'l';
end if;
count >= 10000000 then count := 0; end if;

end if;
end process;

data_out <= ADCdata(l5 downto 4) when ADC_reg_addr = "0011000" =1lse "000000000000";

Code Snippet 11. 6: Delay of 100 ms

Page 8 of 9

Chapter 11 | Joseph Attard

As already stated, in this project two ADC channels were employed and therefore
these had to be displayed on different display-media. Code Snippet 11.6 shows the
100 mS delay process and also a statement that assigns the raw 12-bit data to output
LEDs. It must be stressed here the versatility of the FPGA as opposed to a
microcontroller. In a microcontroller, the raw data had to be shifted to the left by 4
places, however with FPGAs, all one has to do is to extract the bits of interest and
assign them to a new register already placed according to their binary weight!

The ADC data is only shown on the LEDs when the address of the Auxiliary channel
8 is available at the output of the XADC block. This is very convenient.

internalADCresult <= to_integer(ADCdata (15 downto 4));

sevenseg <= "0111111" when internalADCresult >= 0 and internalADCresult < 400 and ADC_reg_addr = "0000011" else
"0000110" n internalADCresult >= 400 and internalADCresult < 800 and ADC_reg_addr = "0000011" else
"1011011" internalADCresult >= 800 and internalADCresult < 1200 and ADC_reg_addr = "0000011" else

"1001111" internalADCresult 1200 and internalADCresult < 1600 and ADC_reg_addr "0000011" else

"1100110" internalADCresult >= 1600 and internalADCresult < 2000 and ADC_reg_addr = "0000011" else
"1101101" en internalADCresult >= 2000 and internalADCresult < and ADC_reg_addr = "0000011" else
"1011011" internalADCresult >= and internalADCresult < 2800 an *_reg_addr "0000011" =

and internalADCresult < 3200 and

"1001111" internalADCresult >= ~_reg_addr = "0000011" e
"1100110" internalADCresult >= 3200 and internalADCresult < 3600 and ADC reg_addr "0000011" =
"1100111" when internalADCresult >= 3600 and internalADCresult < 4096 and ADC_reg_addr = "0000011" &
"0000000";

Code Snippet 11. 7: Seven Segment Driver

Code Snippet 11.7 shows a convenient way to convert the voltage of a signal from the
ADC into decimal levels from O to 9. However, to use the relational operators in
VHDL, one has to use integer data types. So, a concurrent statement was included
to convert the input ADC data from unsigned to integer. Then the new variable or
register could be used in the when-else statement.

That should wrap everything up, in the next chapter, the same project will be
extended to include the Processing System of the Zynq 7 System-on-Chip.

Page 9 of 9

